精英家教网 > 初中数学 > 题目详情
16、已知:如图,AB⊥BE于点B,DE⊥BE于点E,F、C在BE上,AC、DF相交于点G,且AB=DE,BF=CE.
求证:GF=GC.
分析:要证明GF=GC,证明∠ACB=∠DFE即可得出;要证明这两角相等,就必须证明三角形ABC和DEF全等.这两个三角形中已知的条件有一组直角,AB=DE,那么只需证得BC=EF即可得出两三角形全等的结论,已知了BF=CE,等式两边都加上FC后,就可得出BC=EF,那么这两三角形也就全等了(SAS).那么∠ACB=∠DFE,GF=GC.
解答:证明:∵AB⊥BE,DE⊥BE,
∴ABC=DEF=90°,
∵BF=CE,
∴BC=EF,
又∵AB=DE,
∴△ABC≌△DEF,
∴ACB=DFE,
∴∠ACB=∠DFE,
∴GF=GC.
点评:本题考查的是全等三角形的判定.利用全等三角形来得出角相等或线段相等是解此类题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB,CD相交于点O,且OA•OD=OB•OC,求证:AC∥DB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、已知,如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB=AC,DB=DC,求证:∠B=∠C.

查看答案和解析>>

同步练习册答案