精英家教网 > 初中数学 > 题目详情

【题目】已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.

(1)当k=﹣1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当 时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?

【答案】
(1)

解:①C(1,2),Q(2,0)

②由题意得:P(t,0),C(t,﹣t+3),Q(3﹣t,0).

分两种情况讨论:

情形一:当△AQC∽△AOB时,∠AQC=∠AOB=90°,

∴CQ⊥OA,

∵CP⊥OA,

∴点P与点Q重合,OQ=OP,

即3﹣t=t,

∴t=1.5;

情形二:当△ACQ∽△AOB时,∠ACQ=∠AOB=90°,

∵OA=OB=3,

∴△AOB是等腰直角三角形,

∴△ACQ也是等腰直角三角形.

∵CP⊥OA,

∴AQ=2CP,

即t=2(﹣t+3),

∴t=2.

∴满足条件的t的值是1.5秒或2秒


(2)

①由题意得:C(t,﹣ ),

∴以C为顶点的抛物线解析式是y=

即(x﹣t)2+ (x﹣t)=0,

∴(x﹣t)(x﹣t+ )=0,

解得

过点D作DE⊥CP于点E,则∠DEC=∠AOB=90°,

∵DE∥OA,

∴∠EDC=∠OAB,

∴△DEC∽△AOB,

∵AO=4,AB=5,DE=

∴CD=

②∵ ,CD边上的高=

∴SCOD为定值.

要使OC边上的高h的值最大,只要OC最短,因为当OC⊥AB时OC最短,

此时OC的长为 ,∠BCO=90°,

∵∠AOB=90°,

∴∠COP=90°﹣∠BOC=∠OBA,

又∵CP⊥OA,

∴Rt△PCO∽Rt△OAB,

,OP=

即t=

∴当t为 秒时,h的值最大.


【解析】(1)①由题意可得;②由题意得到关于t的坐标.按照两种情形解答,从而得到答案.(2)①以点C为顶点的抛物线,解得关于t的根,又由过点D作DE⊥CP于点E,则∠DEC=∠AOB=90°,又由△DEC∽△AOB从而解得.②先求得三角形COD的面积为定值,又由Rt△PCO∽Rt△OAB,在线段比例中t为 时,h最大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.
(1)求证:ACAD=ABAE;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为8cm,EFG分别是ABCDDA上的动点,且AE=BF=CG=DH.
(1)求证:四边形EFGH是正方形;
(2)判断直线EG是否经过某一定点,说明理由;
(3)求四边形EFGH面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数 (k≠0)的图象上.
(1)求a的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生发言次数进行了统计,并绘制成如下频数分布折线图(图1).

(1)请根据图1,回答下列问题:
①这个班共有名学生,发言次数是5次的男生有人、女生有人;
②男、女生发言次数的中位数分别是次和次;
(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示,求第二天发言次数增加3次的学生人数和全班增加的发言总次数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,则点F到直线BC的距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.
(1)求证:DA平分∠CDO;
(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1, =1.4, =1.7)

查看答案和解析>>

同步练习册答案