【题目】已知反比例函数y=的图象经过点A(x1,y1)和B(x2,y2)(x1<x2)
(1)若A(4,n)和B(n+,3),求反比例函数的表达式;
(2)若m=1,
①当x2=1时,直接写出y1的取值范围;
②当x1<x2<0,p=,q=,试判断p,q的大小关系,并说明理由;
(3)若过A、B两点的直线y=x+2与y轴交于点C,连接BO,记△COB的面积为S,当<S<1,求m的取值范围.
【答案】(1)y=;(2)①当0<x1<1时,y1>1,当x1<0时,y1<0;②p<q,见解析;(3)<m<3或-1<m<-
【解析】
(1)将点A,B的坐标代入反比例函数解析式中,联立方程组即可得出结论;
(2)先得出反比例函数解析式,
①先得出x1=,再分两种情况讨论即可得出结论;
②先表示出y1=,y2=,进而得出p=,最后用作差法,即可得出结论;
(3)先用m表示出x2=-1+,再求出点C坐标,进而用x2表示出S,再分两种情况用<S<1确定出x2的范围,即可得出-1+的范围,即可得出m的范围.
解:(1)∵A(4,n)和B(n+,3)在反比例函数y=的图象上,
∴4n=3(n+)=m,
∴n=1,m=4,
∴反比例函数的表达式为y=;
(2)∵m=1,
∴反比例函数的表达式为y=,
①如图1,∵B(x2,y2)在反比例函数y=的图象上,
∴y2=1,
∴B(1,1),
∵A(x1,y1)在反比例函数y=的图象上,
∴y1=,
∴x1=,
∵x1<x2,x2=1,
∴x1<1,
当0<x1<1时,y1>1,
当x1<0时,y1<0;
②p<q,理由:∵反比例函数y=的图象经过点A(x1,y1)和B(x2,y2),
∴y1=,y2=,
∴p===,
∵q=,
∴p-q=-==,
∵x1<x2<0,
∴(x1+x2)2>0,x1x2>0,x1+x2<0,
∴<0,
∴p-q<0,
∴p<q;
(3)∵点B(x2,y2)在直线AB:y=x+2上,也在在反比例函数y=的图象上,
∴,解得,x=-1,
∵x1<x2,
∴x2=-1+
∵直线AB:y=x+2与y轴相交于点C,
∴C(0,2),
当m>0时,如图2,
∵A(x1,y1)和B(x2,y2)(x1<x2),
∴点B的横坐标大于0,
即:x2>0
∴S=OCx2=×2×x2=x2,
∵<S<1,
∴<x2<1,
∴<-1+<1,
∴<m<3;
当m<0时,如图3,∵A(x1,y1)和B(x2,y2)(x1<x2),
∴点B的横坐标小于0,
即:x2<0
∴S=OC|x2|=-×2×x2=-x2,
∵<S<1,
∴<-x2<1,
∴-1<x2<-,
∴-1<-1+<-,
∴-1<m<-,
即:当<S<1时,m的取值范围为<m<3或-1<m<-.
科目:初中数学 来源: 题型:
【题目】某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.
(1)该商场购进甲、乙两种商品各多少件?
(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实际问题
某批发商以元/ 的成本价购入了某产品,据市场预测,该产品的销售价(元/ )与保存时间(天)的函数关系为,但保存这批产品平均每天将损耗.另外,批发商每天保存该批产品的费用为元.已知该产品每天的销量不超过,若批发商希望通过这批产品卖出获利元,则批发商应在保存该产品多少天时一次性卖出?
小明的思路及解答
本题的相等关系是:
销售价销量成本价销量保存费用获利.
解:设批发商应在保存该产品天时一次性卖出可获利元.
根据上面的相等关系,
得.
解这个方程,得, .
当时, (不合题意,舍去),
当时, .
答:批发商应在保存该产品天时一次性卖出可获利元.
数学老师的批改
数学老师在小明的解答中画了一条横线,并打了一个“”.
你的观点及做法
()请指出小明错误的原因.
()重新给出正确的解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判断这个四边形是平行四边形的条件共有
A. 1组 B. 2组 C. 3组 D. 4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),
(1)求这两个函数的关系式;
(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;
(3)如果点C与点A关于x轴对称,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)()﹣2﹣(﹣2)0+(﹣0.2)2018×(﹣5)2018;
(2)用整式乘法公式计算:1012﹣1;
(3)(x2y+2x2y﹣y3)÷y﹣(y+2x)(2x﹣y);
(4)先化简,再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中,a=1,b=﹣2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.
(1)求证:△ABE∽△DEF;
(2)求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com