精英家教网 > 初中数学 > 题目详情
2.如图,在△ABC中,AB=AC,点O为AB边上一点,OA=2,OB=1,过点A作AD∥BC,且∠COD=∠B.求证:AD•BC=3.

分析 连接DC,求出AC=AB=3,根据平行线性质和等腰三角形性质得出∠DAC=∠ACB=∠B,求出∠DAC=∠COD,推出A、D、C、O四点共圆,求出∠COB=∠ADC,根据相似三角形的判定得出△DAC∽△OBC,得出比例式,代入求出即可.

解答 证明:
连接DC,
∵AO=2,OB=1,
∴AC=AB=2+1=3,
∵AD∥BC,AC=AB,
∴∠DAC=∠ACB=∠B,
∵∠B=∠COD,
∴∠DAC=∠COD,
∴A、D、C、O四点共圆,
∴∠COB=∠ADC,
∵∠B=∠DAC,
∴△DAC∽△OBC,
∴$\frac{AD}{AC}=\frac{OB}{BC}$,
∴AD•BC=AC•OB=3×1=3.

点评 本题考查了圆内接四边形的性质,相似三角形的性质和判定,等腰三角形的性质,平行线的性质的应用,能求出△DAC∽△OBC是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.当a是怎样的实数时,下列各式在实数范围内有意义?
(1)$\sqrt{a+2}$
(2)$\sqrt{3-a}$
(3)$\sqrt{5a}$
(4)$\sqrt{2a+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,$\widehat{BD}$=$\widehat{CE}$,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.比较下列各题中两式的大小:
(1)x2+1与x2+2
(2)2x-5与-5+6x.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.计算$\sqrt{6{x}^{3}}÷2\sqrt{\frac{x}{3}}$的结果是(  )
A.2$\sqrt{2}$xB.xC.6$\sqrt{2}$xD.$\frac{2\sqrt{2}}{3}$x

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:
探究:函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的图象与性质.
小东根据学习函数的经验,对函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:
(1)函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的自变量x的取值范围是x≠1;
(2)下表是y与x的几组对应值.
x-2-10$\frac{1}{2}$$\frac{2}{3}$$\frac{4}{3}$$\frac{3}{2}$234
y$\frac{25}{6}$$\frac{3}{2}$$-\frac{1}{2}$$-\frac{15}{8}$$-\frac{53}{18}$$\frac{55}{18}$$\frac{17}{8}$$\frac{3}{2}$$\frac{5}{2}$m
则m的值是$\frac{29}{6}$;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是$(2,\frac{3}{2})$,结合函数的图象,
写出该函数的其他性质(一条即可):当x<1时,y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,在△ABC中,∠ACB=90°,AC=3cm,BC=4cm,点D为AB中点,连结CD,动点P、Q从点C同时出发,点P沿BC边C→B→C以 2a cm/s的速度运动;点Q沿CA边C→A以 a cm/s的速度运动,当点Q到达点A时,两点停止运动,以CQ,CP为边作矩形CQMP,当矩形CQMP与△CDB重叠部分的图形是四边形使,设重叠部分图形的面积为y(cm2).P、Q两点运动时间为t(s),在点P由C→B过程中,y与t的图象如图2所示.

(1)求a、m的值;
(2)求y与t的函数关系式,并写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.化简:$2(\overrightarrow a-2\overrightarrow b)-3(\overrightarrow a+\overrightarrow b)$=-$\overrightarrow{a}$-7$\overrightarrow{b}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,AB=BC,∠ABC=90°,点F为AB延长线上一点,点E在BC上,BE=BF,连接AE,EF和CF.
(1)求证:△ABE≌△CBF;
(2)若∠CAE=30°,求∠EFC的度数.

查看答案和解析>>

同步练习册答案