精英家教网 > 初中数学 > 题目详情
(2012•宜宾)如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=
2
-1
2
-1
分析:过E作EF⊥DC于F,根据正方形的性质和角平分线的性质以及勾股定理即可求出DE的长.
解答:解:过E作EF⊥DC于F,
∵四边形ABCD是正方形,
∴AC⊥BD,
∵CE平分∠ACD交BD于点E,
∴EO=EF,
∵正方形ABCD的边长为1,
∴AC=
2

∴CO=
1
2
AC=
2
2

∴CF=CO=
2
2

∴EF=DF=DC-CF=1-
2
2

∴DE=
EF2+DF2
=
2
-1,
故答案为:
2
-1.
点评:本题考查了正方形的性质:对角线相等,互相垂直平分,并且每条对角线平分一组对角、角平分线的性质:角的平分线上的点到角的两边的距离相等以及勾股定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•宜宾)如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(-4,0).
(1)求经过点C的反比例函数的解析式;
(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宜宾)如图,点A、B、D、E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宜宾)如图,已知∠1=∠2=∠3=59°,则∠4=
121°
121°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宜宾)如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标为
(-1,-1)
(-1,-1)

查看答案和解析>>

同步练习册答案