精英家教网 > 初中数学 > 题目详情
(2012•潍坊)如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件
∠BDE=∠BAC
∠BDE=∠BAC
,使△ABC≌△DBE.(只需添加一个即可)
分析:根据∠ABD=∠CBE可以证明得到∠ABC=∠DBE,然后根据利用的证明方法,“角边角”“边角边”“角角边”分别写出第三个条件即可.
解答:解:∵∠ABD=∠CBE,
∴∠ABD+∠ABE=∠CBE+∠ABE,
即∠ABC=∠DBE,
∵AB=DB,
∴①用“角边角”,需添加∠BDE=∠BAC,
②用“边角边”,需添加BE=BC,
③用“角角边”,需添加∠ACB=∠DEB.
故答案为:∠BDE=∠BAC或BE=BC或∠ACB=∠DEB.(写出一个即可)
点评:本题考查了全等三角形的判定,根据已知条件有一边与一角,根据不同的证明方法可以选择添加不同的条件,需要注意,不能使添加的条件符合“边边角”,这也是本题容易出的地方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•潍坊)如图空心圆柱体的主视图的画法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•潍坊)如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•潍坊)如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.
(1)求证:四边形AECF为平行四边形;
(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•潍坊)如图,已知抛物线与坐标轴分别交于A(-2,0),B(2,0),C(0,-1)三点,过坐标原点O的直线y=kx与抛物线交于M、N两点.分别过点C、D(0,-2)作平行于x轴的直线l1、l2
(1)求抛物线对应二次函数的解析式;
(2)求证以ON为直径的圆与直线l1相切;
(3)求线段MN的长(用k表示),并证明M、N两点到直线l2的距离之和等于线
段MN的长.

查看答案和解析>>

同步练习册答案