精英家教网 > 初中数学 > 题目详情
已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求抛物线的函数解析式;
(2)求抛物线的对称轴和C点的坐标.
分析:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),直接代入点A、B、O建立方程组,求出a、b、c的值即可;
(2)由函数解析式利用公式法求得对称轴和顶点坐标即可.
解答:解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
将点A(-2,0),B(-3,3),O(0,0),代入可得:
4a-2b+c=0
9a-3b+c=0
c=0

解得:
a=1
b=2
c=0

故函数解析式为:y=x2+2x.

(2)对称轴为直线x=-1,C(-1,-1)
点评:此题考查利用待定系数法求函数解析式,根据给出的点灵活选择二次函数解析式是解体的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),
C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线经过点A(4,0)、B(1,-6)和原点.求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

根据下列条件,求二次函数的关系式
(1)已知抛物线的顶点在(1,-2),且过点(2,3);
(2)已知抛物线经过(2,0)、(0,-2)和(-2,3)三点.

查看答案和解析>>

同步练习册答案