精英家教网 > 初中数学 > 题目详情

【题目】如图 C RtACB RtDCE 的公共点ACB=DCE=90°,连 AD、BE,过点 C CFAD 于点 F,延长 FC BE 于点 G. AC=BC=25,CE=15, DC=20,的值为___________

【答案】

【解析】

E EHGF H,过 B BPGF P,依据EHGBPG,可得=再根据DCF∽△CEH,ACF∽△CBP,即可得到 EH=CF,BP=CF,进 而得出=

如图 E EHGF H,过 B BPGFP,则∠EHG=BPG=90°,

又∵∠EGH=BGP,

∴△EHG∽△BPG,

=

CFAD,

∴∠DFC=AFC=90°,

∴∠DFC=CHF,AFC=CPB, 又∵∠ACB=DCE=90°,

∴∠CDF=ECH,FAC=PCB,

∴△DCF∽△CEH,ACF∽△CBP,

EH=CF,BP=CF,

=

=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AEBDE

1)若BCBDAD15,求△ABD的周长.

2)若∠DBC45°,对角线ACBD交于点OFAE上一点,且AF2EO,求证:CFAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,EFAC,垂足为点H,分别交ADABCB的延长线交于点EMF,且AEFB12,则AHAC的值为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形的一条对角线将这个四边形分成两个三角形,如果这两个三角形相似(不全等),那么我们将这条对角线叫做这个四边形的相似对角线.

1)如图1,四边形中,,对角线平分,求证:是四边形的相似对角线;

2)如图2,直线分别与轴相交于两点,为反比例函数)上的点,若是四边形的相似对角线,求反比例函数的解析式;

3)如图3是四边形的相似对角线,点的坐标为轴,,连接的面积为.过两点的抛物线)与轴交于两点,记,若直线与抛物线恰好有3个交点,求实数的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于两点,与轴交于点,点是对称轴右侧抛物线上一点,且,则点的坐标为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的四个顶点分别在反比例函数(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.

(1)当m=4,n=20时.

①若点P的纵坐标为2,求直线AB的函数表达式.

②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.

(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经销一种高档水果,原价每千克50元.

1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;

2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,则日销售量将减少20千克,那么每千克水果应涨价多少元时,商场获得的总利润(元)最大,最大是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在由边长为个单位长度的小正方形组成的网格中,已知点均为网格线的交点.

1)在网格中将绕点顺时针旋转,画出旋转后的图形

2)在网格中将放大倍得到,使为对应点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图1,等腰直角三角形中,,点、点分别在边上,且,显然

变式:若将图1中的绕点逆时针旋转,使得点的内部,其它条件不变(如图2),请你猜想线段与线段的关系,并加以证明.

拓展:若图2中的都为等边三角形,其它条件不变(如图3),则__________,直线相交所夹的锐角为__________°.

查看答案和解析>>

同步练习册答案