精英家教网 > 初中数学 > 题目详情

如图,已知AE、CE分别是∠BAC、∠ACD的平分线,且∠1+∠2=∠AEC.
(1)试确定直线AB、CD的位置关系;
(2)直线AE、CE互相垂直吗?若互相垂直,请给予证明;若不互相垂直,说明理由.

解:(1)作∠AEF=∠1,EF交AC于F,如图
∵∠BAE=∠1,
∴∠BAE=∠AEF,
∴AB∥EF.
∵∠1+∠2=∠AEC,
∴∠FEC=∠2.
又∵∠DCE=∠2,
∴∠FEC=∠DCE,
∴CD∥EF,
∴AB∥CD.

(2)AE⊥CE.
∵AB∥CD,
∴∠BAC+∠ACD=180°.
∵∠BAC=2∠1,∠ACD=2∠2,
∴2∠1+2∠2=180°,
∴∠1+∠2=90°.
∵∠AEC=∠1+∠2,
∴∠AEC=90°,
∴AE⊥CE.
分析:(1)可作∠AEF=∠1,EF交AC于F,得出AB∥EF,CD∥EF,进而可得出结论;
(2)因为∠BAC=2∠1,∠ACD=2∠2,可利用同旁内角互补得∠1+∠2=90°,进而可得垂直关系.
点评:熟练掌握角平分线的性质及平行线的判定,是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知AE、CE分别是∠BAC、∠ACD的平分线,且∠1+∠2=∠AEC.
(1)试确定直线AB、CD的位置关系;
(2)直线AE、CE互相垂直吗?若互相垂直,请给予证明;若不互相垂直,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AE=DF,AB=CD,AB∥CD.求证:
(1)CE=BF;
(2)CE∥BF.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书 九年级数学 上 (江苏版课标本) 江苏版课标本 题型:047

如图,已知AE=CE,EH=EB,CB⊥AE于B,求证:AH⊥EC.

查看答案和解析>>

科目:初中数学 来源: 题型:047

如图,已知AE=CE,BD⊥AC.求证:BA+DA=BC+DC.

查看答案和解析>>

同步练习册答案