精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE于G点,交DF于F点,CE交DF于H点、交BE于E点.
求证:△EBC≌△FDA.
考点:平行四边形的性质,全等三角形的判定
专题:证明题
分析:根据平行三边的性质可知:AD=BC,由平行四边形的判定方法易证四边形BMDK和四边形AJCN是平行四边形,所以得∠FAD=∠ECB,∠ADF=∠EBC,进而证明:△EBC≌△FDA.
解答:证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵AF∥CE,BE∥DF,
∴四边形BMDK和四边形AJCN是平行四边形,
∴∠FAD=∠ECB,∠ADF=∠EBC,
在△EBC和△FDA中,
∠EBC=∠ADF
BC=AD
∠BCE=∠DAF

∴△EBC≌△FDA(ASA).
点评:本题考查了平行四边形的判定以及全等三角形的判定,在全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
16
+(π-3)0-tan45°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.
(1)求证:△BMD∽△CNE;
(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.
(1)求出图中m,a的值;
(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;
(3)当乙车行驶多长时间时,两车恰好相距50km.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一艘轮船以30海里/小时的速度由西向东航行,途中接到台风警报,台风中心正以60海里/小时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区,当轮船到A处时,测得台风中心移到位于点A正南方向的B处,且AB=40海里.
(1)若轮船以原方向、原速度继续航行:
①船长发现,当台风中心到达A处时,轮船肯定受影响,为什么?
②求轮船从A点出发到最初遇到台风的时间;
(2)若轮船在A处迅速改变航线,向北偏东60°的方向的避风港以30海里/小时的速度驶去,轮船还会不会受到影响?若会,试求轮船最初遇到台风的时间;若不会,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(
x-1
x
-
1
x
)÷
x-2
x2-x

查看答案和解析>>

科目:初中数学 来源: 题型:

关于x的方程
ax+1
x-2
=-1的解是正数,则a的取值范围是
 

查看答案和解析>>

同步练习册答案