精英家教网 > 初中数学 > 题目详情

如图,一次函数y=kx+b的图象经过点A(4,0),直线y=-3x+3与x轴交于点B,与y轴交于点D,且两直线交于点C(2,m).
(1)求m的值及一次函数的解析式;
(2)求△ACD的面积.

解:(1)把C(2,m)代入y=-3x+3得m=-3×2+3=-3;
把A(4,0),C(2,-3)代入y=kx+b得
解得
所以一次函数的解析式为y=x-6;

(2)对于y=-3x+3,令y=0,则x=1,则B(1,0);令x=0,则y=3,则D(0,3).
则AB=4-1=3,
则S△ACD=S△ABD+S△ABC=×3×3+×3×3=9.
分析:(1)先把点C(2,m)代入y=-3x+3得求得m=-3,然后利用待定系数法确定一次函数的解析式;
(2)先确定直线y=-3x+3与x轴的交点坐标,然后利用S△ACD=S△ABD+S△ABC进行计算.
点评:本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案