精英家教网 > 初中数学 > 题目详情

【题目】如图(1),在中,.若将绕点顺时针旋转至Δ,使射线射线相交于点(不与重合).

1)如图(1),若,则

2)如图(2),连结,若,试求出的度数;

3)请探究之间所满足的数量关系,并加以证明.

【答案】1;(2;(3

【解析】

1)由两直线平行内错角相等即可得到答案;

2)根据旋转前后线段和角相等及可得到为等腰直角三角形,从而得到的度数;

(3)分两种情况讨论:①射线与线段相交于点,②射线延长线相交于点,通过平行线的性质和题中的角度关系即可得到答案.

解:(1)∵

故答案为

2)由旋转可知

,即

为等腰直角三角形,

3

①如图(2),射线与线段相交于点

由旋转可知

由于

②如下图,射线延长线相交于点

由旋转可知

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.

(1)求抛物线的函数表达式;
(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?
(3)在坐标平面内是否存在点Q,将△OAC绕点Q逆时针旋转90°,使得旋转后的三角形恰好有两个顶点落在抛物线上.若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列条件:①∠AB=∠C ②∠ABC=235 ③∠A=B= C④∠A=∠B=2∠C⑤∠A=∠B= C,其中能确定ABC 为直角三角形的条件有 ( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于 的一元二次方程m +2x-1=0有两个不相等的实数根,则 的取值范围是( )
A.m<-1
B.m>1
C.m<1且m≠0
D.m>-1且m≠0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:
①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0,
其中结论正确有( )个。

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程(x-2)(x-3)=m有实数根x1 , x2 , 且x1 x2有下列结论:
①x1=2,x2=3;②m> ;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中正确的结论是(填正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DMEN分别垂直平分ACBC,交ABMN两点,DMEN相交于点F

1)若△CMN的周长为15cm,求AB的长;

2)若∠MFN=70°,求∠MCN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABADAC5,∠DAB=∠DCB90°,则四边形ABCD的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过O点作射线OC,使,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.

1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为______度;

2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.

查看答案和解析>>

同步练习册答案