【题目】如图,已知抛物线 (a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.
(1)求抛物线的函数表达式;
(2)P为直线BD下方的抛物线上的一点,连接PD、PB, 求△PBD面积的最大值.
(3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
【答案】(1);(2);(3)当F坐标为(-2, )时,点M在整个运动过程中用时最少.
【解析】试题分析: (1)首先求出点A、B坐标,然后求得点D坐标,代入抛物线y=a(x+2)(x-4)(a为常数,且a>0),求得抛物线解析式;
(2) 设P(m, ),根据三角形的面积公式即可得解;
(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF.作辅助线,将AF+DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点.
试题解析:(1)抛物线令y=0,解得x=-2或x=4,
∴A(-2,0),B(4,0).
∵直线经过点B(4,0),
∴,解得,
∴直线BD解析式为: .
当x=-5时,y=3,
∴D(-5,3).
∵点D(-5, )在抛物线上,
∴,
∴.
∴抛物线的函数表达式为: .
(2)设P(m, )
∴
.
∴△BPD面积的最大值为..
(3)作DK∥AB,AH⊥DK,AH交直线BD于点F,
∵由(2)得,DN=,BN=9,容易得∠DBA=30°,∴∠BDH=30°,
∴FG=DF×sin30°=,
∴当且仅当AH⊥DK时,AF+FH最小,
点M在整个运动中用时为:t=,
∵lBD: ,∴Fx=Ax=-2,F(-2, )
∴当F坐标为(-2, )时,用时最少.
科目:初中数学 来源: 题型:
【题目】小明从家里出发到超市买东西,再回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示.请你根据图象回答下列问题:
(1)小明家离超市的距离是多少千米;
(2)小明在超市买东西时间为多少小时;
(3)小明去超市时的速度是多少千米/小时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列关系式:①x2-3x=4;②S=3.5t;③y= ;④y=5x-3;⑤C=2πR;⑥S=v0t+ at2;⑦2y+y2=0,其中不是函数关系的是( )
A.①⑦
B.①②③④
C.④⑥
D.①②⑦
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲.乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图1所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲.乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.
根据图象信息,以上说法正确的有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小林画出函数 的一部分图象,利用图象回答:
(1)自变量x的取值范围.
(2)当x取什么值时,y的最小值.最大值各是多少?
(3)在图中,当x增大时,y的值是怎样变化?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠DBC=15°,则∠A的度数是( )
A.50°
B.20°
C.30°
D.25°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com