精英家教网 > 初中数学 > 题目详情

如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、EC、BF、CF.
(1)四边形AECD的形状是______;
(2)若CD=2,求CF的长.

解:(1)四边形AECD的形状是平行四边形,理由为:
∵E为AB的中点,
∴AE=EB=AB,又AB=2CD,即CD=AB,
∴DC=AE,又DC∥AE,
∴四边形AECD为平行四边形;

(2)∵四边形AECD是平行四边形,且CD=2,
∴AE=CD=2,
∵E是AB的中点,
∴AE=EB=2,AB=2CD=4,
∵四边形AECD是平行四边形,
∴EC∥AD,EC=AD,又∠A=60°,
∴∠BEC=∠A=60°,
又∵AB⊥BC,
∴∠EBC=90°,
在Rt△EBC中,∠ECB=90°-60°=30°,EB=2,
∴EC=2EB=4,
∴BC==2
∴AD=EC=4,…
∵F是AD的中点,
∴AF=2,
又∵AE=2,∠A=60°,
∴△AEF是等边三角形,
∴EF=2,∠AEF=60°,
又∵∠CEB=60°,
∴∠FEC=180°-(∠AEF+∠CEB)=60°,
在△ECF和△ECB中,

∴△ECF≌△ECB(SAS),
∴FC=BC=2
故答案为:平行四边形.
分析:(1)四边形AECD为平行四边形,理由为:由E为AB的中点,得到AE=BE=AB,又AB=2CD,即CD=AB,可得出DC=AE,又DC平行于AE,利用一组对边平行且相等的四边形为平行四边形可得出AECD为平行四边形;
(2)由AECD为平行四边形且DC=2,得到AE=2,由E为AB的中点,得到AE=BE=2,可得出AB=4,又根据平行四边形的对边平行,得到EC与AD平行,再利用两直线平行同位角相等,由∠A为60°得到∠CEB为60°,在直角三角形EBC中,求出∠ECB为30°,利用30°角所对的直角边等于斜边的一半,根据EB的长求出EC的长,利用勾股定理求出BC的长,再由平行四边形的对边相等可得出AD=CE,求出AD的长,又F为AD的中点,求出AF=2,可得出三角形AFE为等边三角形,根据等边三角形的性质得到∠AEF为60°,又∠CEB为60°,利用平角的定义求出∠FEC为60°,即∠FEC=∠BEC,再由EF=EB,及公共边EC,利用SAS可得出三角形CFE与三角形CBE全等,根据全等三角形的对应边相等可得出CF=CB,由CB的长即可得到CF的长.
点评:此题考查了直角梯形的性质,涉及的知识有:含30°直角三角形的性质,勾股定理,全等三角形的判定与性质,平行四边形的判定与性质,平行线的性质,以及等边三角形的判定与性质,熟练掌握判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案