精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-
1
4
x2+x+3
与x轴相交于点A、B,与y轴相交于点C,顶点为点D,对称轴l与直线BC相交于点E精英家教网,与x轴相交于点F.
(1)求直线BC的解析式;
(2)设点P为该抛物线上的一个动点,以点P为圆心,r为半径作⊙P
①当点P运动到点D时,若⊙P与直线BC相交,求r的取值范围;
②若r=
4
5
5
,是否存在点P使⊙P与直线BC相切?若存在,请求出点P的坐标;若不存在,请说明理由.
提示:抛物线y=ax2+bx+x(a≠0)的顶点坐标(-
b
2a
4ac-b2
4a
),对称轴x=-
b
2a
分析:(1)根据抛物线的解析式,易求得A、B、C的坐标,进而可用待定系数法求出直线BC的解析式;
(2)根据抛物线的解析式,可求出顶点D的坐标,进而可根据直线BC的解析式求出E点的坐标,由此可求出DE、EF、BF的长;
①当D、P重合时,过D作DG⊥BC于G,易证得△DEG∽△BEF,由此可得到DE、EG的比例关系,进而可由勾股定理求出DE的长;若⊙P与直线BC相交,那么半径r>DE,由此可求出r的取值范围;
②由①知:当DE=r=
4
5
5
;可过F作FM⊥BC于M,由于DE=EF=2,易证得FM=DG=r;可分别过D、F作直线BC的平行线m、n,则P点必为直线m、n与抛物线的交点,可先求出直线m、n的解析式,再分别联立抛物线的解析式,即可求出P点的坐标.
解答:解:(1)抛物线y=-
1
4
x2+x+3中,
令y=0,得0=-
1
4
x2+x+3,
解得x=-2,x=6;
令x=0,得y=3;
∴A(-2,0),B(6,0),C(0,3);
设直线BC的解析式为y=kx+b,则有:
6k+b=0
b=3

解得
k=-
1
2
b=3

∴直线BC的解析式为:y=-
1
2
x+3;

(2)由抛物线的解析式知:y=-
1
4
(x-2)2+4,
即D(2,4);
当x=2时,y=-
1
2
x+3=-1+3=2,
即E(2,2);
∴EF=DE=2,BF=4;
①过D作DG⊥BC于G,则△DEG∽△BEF;精英家教网
∴DE:GE=BF:EF=2:1,即DG=2GE;
Rt△DGE中,设GE=x,则DG=2x,
由勾股定理,得:GE2+DG2=DE2
即:4x2+x2=4,
解得x=
2
5
5

∴DG=2x=
4
5
5

故D、P重合时,若⊙P与直线BC相切,则r>DG,即r≥
4
5
5

②存在符合条件的P点,且P点坐标为:P1(2,4),P2(4,3),P3(3+
17
3-
17
2
),P4(3-
17
3+
17
2
);
过点F作FM⊥BC于M;
∵DE=EF=2,则Rt△DGE≌Rt△FME;
∴FM=DG=r=
4
5
5

分别过D、F作直线m、n平行于直线BC,则直线m与直线BC、直线n与直线BC之间的距离都等于r;
所以P点必为直线m、n与抛物线的交点;
设直线m的解析式为:y=ax+h,由于直线m与直线BC平行,则a=-
1
2

∴-
1
2
×2+h=4,h=5,
即直线m的解析式为y=-
1
2
x+5;
同理可求得直线n的解析式为:y=-
1
2
x+1;
联立直线m与抛物线的解析式,
得:
y=-
1
4
x2+x+3
y=-
1
2
x+5

解得
x=2
y=4
x=4
y=3

∴P1(2,4),P2(4,3);
同理,联立直线n与抛物线的解析式可求得:P3(3+
17
3-
17
2
),P4(3-
17
3+
17
2
);
故存在符合条件的P点,且坐标为:P1(2,4),P2(4,3),P3(3+
17
3-
17
2
),P4(3-
17
3+
17
2
).
点评:此题是二次函数的综合类试题,考查了二次函数图象与坐标轴交点坐标的求法、一次函数解析式的确定、勾股定理、相似三角形及全等三角形的性质、切线的性质等重要知识点,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点坐标为M(1,4),与x轴的一个交点是A(-1,0),与y轴交于点B,直线x=1交x轴于点N.
(1)求抛物线的解析式及点B的坐标;
(2)求经过B、M两点的直线的解析式,并求出此直线与x轴的交点C的坐标;
(3)若点P在抛物线的对称轴x=1上运动,请你探索:在x轴上方是否存在这样的P点,使精英家教网以P为圆心的圆经过点A,并且与直线BM相切?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)精英家教网.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c(a≠0)与x轴两交点是A(-1,0),B(3,0),则如图可知y<0时,x的取值范围是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步练习册答案