精英家教网 > 初中数学 > 题目详情
13.如图所示,CD⊥AB,垂足为D,点F是BC上任意一点,FE⊥AB,垂足为E,且∠CDG=∠BFE,∠AGD=80°,求∠BCA的度数.

分析 先根据CD⊥AB,FE⊥AB,可知CD∥EF,再根据平行线的性质及已知可求出∠CDG=∠FCD,再根据平行线的判定及性质解答即可.

解答 解:∵CD⊥AB,FE⊥AB,
∴CD∥EF,
∴∠BFE=∠FCD,
∵∠CDG=∠BFE,
∴∠CDG=∠FCD,
∴DG∥BC,
∴∠BCA=∠3=80°.

点评 此题考查的是平行线的判定与性质,用到的知识点为:内错角相等,两直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.($\sqrt{\frac{y}{x}}$-$\sqrt{\frac{x}{y}}$)2-($\sqrt{\frac{x}{y}}$+$\sqrt{\frac{y}{x}}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.一个面积为42的长方形,其相邻两边长分别为x和y,请你写出与之间的函数解析式,并画出其图象.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.澳洲科学家称他们发现世界最小、最轻的鱼,取名为胖婴鱼,据说据说这种小型鱼类仅有0.7cm,雌鱼为0.84cm,要一百万尾才能凑足1kg,则一条胖婴鱼成鱼的质量为10-6kg.(用科学记数法表示)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知实数x满足x+$\frac{1}{x}$=3,则x2+$\frac{1}{x^2}$的值为7;已知$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$,则$\frac{2x+y-z}{3x-2y+z}$=$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.函数y=mx+m+3与y轴交于正半轴上一点,且y随x的增大而减小.那么m的取值范围是(  )
A.m>0B.0<m<3C.-3<m<0D.m<-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC外分别以AB,AC为边作正方形ABDE和正方形ACFG,连接EG,AM是△ABC中BC边上的中线,延长MA交EG于点H,求证:
(1)AM=$\frac{1}{2}$EG;
(2)AH⊥EG;
(3)EG2+BC2=2(AB2+AC2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如果实数a≠b,且满足5a2+2016a+9=0,9b2+2016b+5=0,求:
①$\frac{b}{a}$的值;②$\frac{ab+1}{b}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知直线y=kx+b经过点A(-3,-8),且与直线$y=\frac{2}{3}x$的公共点B的横坐标为6.
(1)求直线y=kx+b的表达式;
(2)设直线y=kx+b与y轴的公共点为点C,求△BOC的面积.

查看答案和解析>>

同步练习册答案