精英家教网 > 初中数学 > 题目详情
精英家教网如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在双曲线y=
kx
(k>0)
上,若点B的横坐标为2,则直线BE的函数解析式为
 
分析:由点B的横坐标为2,根据图形得到正方形OABC的边长和点B的坐标,设出正方形ADEF的边长为a,由点B和E在同一个双曲线上,列出关于a的方程,求出方程的解得到a的值,进而得到点E的坐标,设出直线BE的解析式为y=kx+b,把点B和E的坐标代入即可求出k和b的值,确定出直线BE的解析式.
解答:解:设正方形ADEF的边长为a,由点B的横坐标为2,
得到正方形OABC的边长为2,即B坐标为(2,2),
则点E的坐标为(a+2,a)(a>0),又点B和E在同一个双曲线上,
∴a(a+2)=4,即(a+1)2=5,解得:a=
5
-1或a=-
5
-1(舍去),
∴点E坐标为(
5
+1,
5
-1),
设直线BE的函数解析式为y=kx+b,将点E和B的坐标代入得:
2k+b=2
(
5
+1)k +b=
5
-1
,解得
k=
1-
5
2
b=1+
5

∴直线BE的解析式为y=
1-
5
2
x+1+
5

故答案为:y=
1-
5
2
x+1+
5
点评:此题考查了正方形及反比例函数的性质,以及会利用待定系数法求直线的解析式.解题的思路是设出正方形ADEF的边长,表示出点E的坐标,且由正方形OABC的边长求出点B的坐标,然后利用待定系数法求出直线BE的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,正方形OABC的面积为16,点O为坐标原点,点B在函数y=
k
x
(k>0,x>0)的图象上,点P(m,n)是函数y=
k
x
(k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴精英家教网的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(提示:考虑点P在点B的左侧或右侧两种情况)
(1)求B点坐标和k的值;
(2)当S=8时,求点P的坐标;
(3)写出S与m的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形OABC、ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B、E在函数y=
4x
  (x>0)
的图象上.
(1)求正方形OABC的面积;
(2)求E点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC和正方形ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=
1
x
(x>0)的图象上,则E点的坐标是
5
+1
2
5
-1
2
5
+1
2
5
-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:
2
,点A的坐标为(1,0),则OD=
2
2
,点E的坐标为
2
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC的面积为4,点D为坐标原点,点B在函数y=
k
x
(k<0,x<0)的图象上,点P(m,n)是函数y=
k
x
(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、),轴的垂线,垂足分别为E、F.
(1)设矩形OEPF的面积为s1,求s1
(2)从矩形DEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为s2.写出s2与m的函数关系式,并标明m的取值范围.

查看答案和解析>>

同步练习册答案