精英家教网 > 初中数学 > 题目详情
时,函数在同一坐标系中的图象大致是(   )
B

试题分析:A、错误,∵a<0,b>0,∴两函数的图象一定不过原点;
B、正确;
C、D错误,∵a<0,b>0,∴必有一函数图象为增函数,一函数的图象为减函数;
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知等腰△AOB放置在平面直角坐标系xOy中, OA=OB,点B的坐标为(3,4) .
(1)求直线AB的解析式;
(2)问将等腰△AOB沿x轴正方向平移多少个单位,能使点B落在反比例函数 (x>0)的图象上.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:
旋钮角度(度)
20
50
70
80
90
所用燃气量(升)
 73
 67
 83
 97
115
 
(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y升与旋钮角度x度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?
(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.

(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市某工艺厂为配合奥运会,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)
……
30
40
50
60
……
每天销售量y(件)
……
500
400
300
200
……
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;

(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若一次函数,当的值减小1,的值就减小2,则当的值增加2时,的值(   )
A.增加4B.减小4C.增加2D.减小2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线,相交于点轴的交点坐标为轴的交点坐标为,结合图象解答下列问题:(每小题4分,共8分)
(1)求直线表示的一次函数的表达式;
(2)当为何值时,,表示的两个一次函数值都大于.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发      小时时,行进中的两车相距8千米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在同一坐标系中,二次函数y=x2+2与一次函数y=2x的图象大致是 (  )

查看答案和解析>>

同步练习册答案