精英家教网 > 初中数学 > 题目详情
如图,?ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求直线CD的解析式;
(2)是否存在x轴上的点E,使得以A、O、E为顶点的三角形与△DAO相似?若存在,请写出符合条件的点E的坐标;若不存在,请说明理由.
(1)∵x2-7x+12=0,
∴(x-3)(x-4)=0,
解得:x=3或x=4,
∵OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB,
∴OA=4,OB=3,
∴点A(0,4),点B(-3,0),
∵四边形ABCD是平行四边形,
∴BC=AD=6,
∴OC=BC-OB=3,
∴点C(3,0),点D(6,4),
设直线CD的解析式为:y=kx+b,
3k+b=0
6k+b=4

解得:
k=
4
3
b=-4

故直线CD的解析式为:y=
4
3
x-4;

(2)存在.
∵点E在x轴上,
∴∠AOE=90°,
∵△DAO中,∠DAO=90°,
∴∠AOE=∠DAO,
当OA:AD=OE:OA时,△OAE△ADO,
4
6
=
OE
4

解得:OE=
8
3

∴点E的坐标为:(
8
3
,0)或(-
8
3
,0);
当OA:OA=OE:AD时,△OAE△AOD,
4
4
=
OE
6

解得:OE=6,
∴点E的坐标为:(6,0)或(-6,0);
∴符合条件的点E的坐标为:(
8
3
,0),(-
8
3
,0),(6,0)或(-6,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某早餐店每天的利润y(元)与售出的早餐x(份)之间的函数关系如图所示.当每天售出的早餐超过150份时,需要增加一名工人.
(1)该店每天至少要售出______份早餐才不亏本;
(2)求出150<x≤300时,y关于x的函数解析式;
(3)要使每天有120元以上的盈利,至少要售出多少份早餐?
(4)该店每出售一份早餐,盈利多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,则当______时,得>0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形OABC的顶点B的坐标为B(8,7),动点P从原点O出发,以每秒2个单位的速度沿折线OA-AB运动,到点B时停止,同时,动点Q从点C出发,以每秒1个单位的速度在线段CO上运动,当一个点停止时,另一个点也随之而停止.在运动过程中,当线段PQ恰好经过点M(3,2)时,运动时间t的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两个同学同时从各自的家里返回同一所学校,他们距学校的路程s(千米)与行走时间t(小时)之间的关系如图所示.请根据图象所提供的信息解答下列问题:
(1)分别求出甲、乙两同学距学校的路程s(千米)与t(小时)之间的函数关系式;
(2)在什么时间,甲、乙两同学距学校的路程相等在什么时间段内,甲同学比乙同学离学校远在什么时间段内,甲同学比乙同学离学校近?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-
3
3
x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O按顺时针方向旋转α角(0°<α<360°),可得△COD.

(1)求点A,B的坐标;
(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE△ABO;
(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;
(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM并延长交x轴于N.
(1)求⊙M的半径.
(2)求线段AC的长.
(3)若D为OA的中点,求证:CD是⊙M的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某地长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定质量,则需要购买行李票,行李票费用y(元)是行李重量x(千克)的一次函数,根据图象回答下列问题:
(1)求y与x之间的函数关系式.
(2)求旅客最多可免费携带多少千克行李?
(3)某旅客所买的行李票的费用为4~15元,求他所带行李的质量范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线l:y=-
3
3
x+
3
交x轴于点A,交y轴于点B,将△AOB沿直线l翻折,点O的对应点C恰好落在双曲线y=
k
x
(k>0)
上.
(1)求k的值;
(2)将△ABC绕AC的中点旋转180°得到△PCA,请判断点P是否在双曲线y=
k
x
上,并说明理由.

查看答案和解析>>

同步练习册答案