【题目】如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.
(1)试说明△PCM≌△QDM.
(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.
【答案】(1)证明见解析;(2)PC=2,理由见解析.
【解析】试题分析: (1)要证明△PCM≌△QDM,可以根据两个三角形全等四个定理,即AAS、ASA、SAS、SSS中的ASA.利用∠QDM=∠PCM,DM=CM,∠DMQ=∠CMP即可得出;
(2)得出P在B、C之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出.
试题解析:
(1)∵AD∥BC,∴∠QDM=∠PCM.
∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,
在△PCM和△QDM中,∵,
∴△PCM≌△QDM(ASA).
(2)当四边形ABPQ是平行四边形时,PB=AQ,
∵BC﹣CP=AD+QD,∴9﹣CP=5+CP,∴CP=(9﹣5)÷2=2.
∴当PC=2时,四边形ABPQ是平行四边形.
点睛:本题中和考查全等三角形、平行四边形的判定,熟练掌握平行四边形的性质和判定方法是解题的关键.
科目:初中数学 来源: 题型:
【题目】下列条件可以判定△ABC是等腰三角形的是( )
A. 三条边长分别是5, 11,5B. 三条边长分别是 6,6,12
C. 三条边长分别是6,13,6D. 三条边长分别为5,5,4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.
(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;
(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A(a,0)、C(0,b)满足,
(1) 直接写出:a=_________,b=_________;
(2) 点B为x轴正半轴上一点,如图1,BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,求直线BE的解析式;
(3) 在(2)的条件下,点M为直线BE上一动点,连OM,将线段OM绕点M逆时针旋转90°,如图2,点O的对应点为N,当点M运动时,判断点N的运动路线是什么图形,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com