精英家教网 > 初中数学 > 题目详情

某商场销售某种品牌的手机,每部进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8部;而当销售价每降低50元时,平均每天就能多售出4部.

(1)当售价为2800元时,这种手机平均每天的销售利润达到多少元?

(2)若设每部手机降低x元,每天的销售利润为y元,试写出y与x之间的函数关系式.

(3)商场要想获得最大利润,每部手机的售价应订为多少元?此时的最大利润是多少元?

 

【答案】

(1)当售价为2800元时,这种手机平均每天的销售利润达到4800元;

(2)

(3)每台彩电降价150元时,商场每天销售这种彩电的利润最大,最大利润是5000元.

【解析】

试题分析:(1)当售价为2800元时,销售价降低100元,平均每天就能售出16部.即可求出每天利润;

(2)根据:利润=(每台实际售价﹣每台进价)×销售量,每台实际售价=2900﹣x,销售量=8+4×,列函数关系式;

(3)利用二次函数的顶点坐标公式,求函数的最大值.

试题解析:(1)当售价为2800元时,销售价降低100元,平均每天就能售出16部.

所以:这种手机平均每天的销售利润为:(元);

(2)根据题意,得,

(3)对于,

时,

所以,每台彩电降价150元时,商场每天销售这种彩电的利润最大,最大利润是5000元.

考点:二次函数的应用.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元至70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高l元,平均每天少销售3箱.
(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数关系式.(注明范围) 
 (2)求出商场平均每天销售这种牛奶的利润W(元),与每箱牛奶的售价x(元)之间的二次函数关系式.(每箱的利润=售价-进价)
(3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在给出的坐标系中画出函数图象的草图.
(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每升高1元,平均每天少销售3箱.
(1)求商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的函数关系式;(每箱的利润=售价-进价)
(2)求出(1)中二次函数图象的顶点坐标,并当x=40,70时W的值.在直角坐标系中画出函数图象的草图;
(3)根据图象可以看出,当牛奶售价为多少时,平均每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现,若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多售3箱,价格每升高1元,平均每天少售3箱.
①写出平均每天的销售量y与每箱售价x之间关系;
②求出商场平均每天销售这种牛奶的利润w与每箱售价x之间的关系;
③求在②的情况下当牛奶每箱售价定为多少时可达到最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~65元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.
(1)写出平均每天销售y(箱)与每箱售价x(元)之间的关系式;
(2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的关系式(每箱的利润=售价-进价);
(3)当每箱牛奶售价为多少时,平均每天的利润为900元?
(4)当每箱牛奶售价为多少时,平均每天的利润为1200元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场销售某种品牌的水壶,进价l2元/个,售价20元/个.为了促销,商场决定凡是买10个以上的,每多买一个,售价就降低O.10元(例如.某人买20个水壶,于是每个降价O.10×(20-10)=1元,就可以按19元/个的价格购买),但是最低价为16元/个.
(1)求顾客一次至少买多少个,才能以最低价购买?
(2)写出当一次购买x个时(x>10),利润y(元)与购买量x(个)之间的函数关系式;
(3)有一天,一位顾客买了46个,另一位顾客买了50个,商场发现卖了50个反而比卖个赚的钱少,请你说明这是为什么?并计算每次卖多少个时利润最大,这时每个水壶的定价是多少?

查看答案和解析>>

同步练习册答案