精英家教网 > 初中数学 > 题目详情

(1)解方程解数学公式
(2)将五个空格填上恰当的数,使得每一行、每一列、每一对角线3个数的和都为0.
     数学公式
   数学公式-数学公式
     数学公式

解:(1)由①×,得3x-y=-2.③
②×,得5x-y=0.④
④-③,得2x=2,x=
把x=代入②,得-y=0,y=

(2)
--
-- 0 +
--

分析:(1)用加减消元法消去y;(2)根据互为相反数的两个数的和为0.
点评:解二元一次方程组的基本方法是代入消元法和加减消元法;特别注意表示一个式子的相反数时,只需在式子的整体前面加上负号,再去括号.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料,解答问题:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y原方程可化为y2-5y+4=0,解此方程得y1=1,y2=4.当y=1时,x2-1=1,∴x=±
2
;当y=4时,x2-1=4,∴x=±
5
,∴原方程的解为x1=
2
,x2=-
2
,x3=
5
,x4=-
5

(1)填空:在原方程得到方程y2-5y+4=0的过程中,利用了
换元
换元
法达到了降次的目的,体现了
转化
转化
的数学思想
(2)解方程:(x2-x)2-8(x2-x)+12=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

材料:为解方程x4-x2-6=0,可将方程变形为(x22-x2-6=0,
然后设x2=y,则(x22=y2,原方程化为y2-y-6=0…①,
解得y1=-2,y2=3.当y1=-2时,x2=-2无意义,舍去;
当y2=3时,x2=3,解得x=±
3

所以原方程的解为x1=
3
,x2=-
3

问题:(1)在原方程得到方程①的过程中,利用
换元
换元
法达到了降次的目的,体现了
转化
转化
 的数学思想;
(2)利用本题的解题方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

材料:为解方程x4-x2-6=0,可将方程变形为(x22-x2-6=0,然后设x2=y,则(x22=y2,原方程化为y2-y-6=0…①,
解得y1=-2,y2=3.
当y1=-2时,x2=-2无意义,舍去;当y2=3时,x2=3,解得x=±
3

所以原方程的解为x1=
3
,x2=-
3

问题:利用本题的解题方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面材料,解答问题:
材料:在解方程x4-2x2-8=0时,我们可以将x2看成一个整体,然后设x2=y,则x4=y2.原方程可化为y2-2y-8=0,解得y=4或y=-2
当y=4时,x2=4,所以x=2或x=-2
当y=-2时,x2=-2,此方程无解
所以原方程的解为x1=2,x2=-2
问题:请参照上述解法解方程(x2-1)2-5(x2-1)+4=0.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年山东临沭第三初级中学九年级10月月考数学试卷(带解析) 题型:解答题

阅读下面例题的解答过程,体会并其方法,并借鉴例题的解法解方程。
例:解方程x2-1=0.
解:(1)当x-1≥0即x≥1时,= x-1。
原化为方程x2-(x-1)-1=0,即x2-x=0
解得x1 =0.x2=1
∵x≥1,故x =0舍去,
∴x=1是原方程的解。
(2)当x-1<0即x<1时,=-(x-1)。
原化为方程x2+(x-1)-1=0,即x2+x-2=0
解得x1 =1.x2=-2
∵x<1,故x =1舍去,
∴x=-2是原方程的解。
综上所述,原方程的解为x1 =1.x2=-2
解方程x2-4=0.

查看答案和解析>>

同步练习册答案