精英家教网 > 初中数学 > 题目详情

在整式-数学公式和x2-y2+2x-1中,单项式是________,单项式的系数是________,次数是________,多项式是________,项是________,它是________次________项式,其中,二次项是________.

-a2b    -    3    x2-y2+2x-1    x2、-y2、2x、-1,    二    四    x2和-y2
分析:根据单项式和多项式的有关概念求解.
解答:在整式-和x2-y2+2x-1中,单项式是-a2b,单项式的系数是-,次数是3;多项式是x2-y2+2x-1,项是x2、-y2、2x、-1,它是二次四项式,其中,二次项是x2和-y2
故答案为-a2b;-;3;x2、-y2、2x、-1;二;四;x2和-y2
点评:本题考查了多项式:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.也考查了单项式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

换元法是把一个比较复杂的数学式子的一部分看成是一个整体,用另一个字母代替这一部分(即换元).换元法的好处是能使式子得到简化,各项的关系容易看清,便于解决问题.此方法充分体现了整体的数学思想.例如:用换元法解分式方程
2x-1
x
-
x
2x-1
=2
时,如果设
2x-1
x
=y
,并将原方程化为关于y的整式方程,那么这个整式方程是y2-2y-1=0,然后在解出y1和y2,再将y1和y2替换成
2x-1
x
=y1
2x-1
x
=y2
,即可解出x1和x2.请用换元法解方程:x2-
12
x2-2x
=2x-1

查看答案和解析>>

科目:初中数学 来源: 题型:

31、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在整式-
1
2
a2b
和x2-y2+2x-1中,单项式是
-
1
2
a2b
-
1
2
a2b
,单项式的系数是
-
1
2
-
1
2
,次数是
3
3
,多项式是
x2-y2+2x-1
x2-y2+2x-1
,项是
x2、-y2、2x、-1,
x2、-y2、2x、-1,
,它是
项式,其中,二次项是
x2和-y2
x2和-y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用______(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>

同步练习册答案