分析 要分类讨论:当k=0,方程变为一元一次方程,有解;当k≠0,方程为一元二次方程,若有实根,则△≥0,即△=42-4×k×3=16-12k≥0,解不等式,然后综合得到k的取值范围,找出k的非负整数值即可.
解答 解:当k=0,方程变为-4x+3=0,解x=$\frac{3}{4}$;
当k≠0,方程有实根,
∴△≥0,即△=42-4×k×3=16-12k≥0,解得k≤$\frac{4}{3}$;
所以k的取值范围为k≤$\frac{4}{3}$,满足条件的k的非负整数值有0,1.
故答案为:0,1.
点评 本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元一次方程和一元二次方程的定义以及分类讨论思想的运用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com