精英家教网 > 初中数学 > 题目详情

如图,EF经过平行四边形ABCD对角线的交点O,AB=4,AD=3,OF=1.3,则平行四边形ABCD的周长与四边形BCEF的周长之差为


  1. A.
    4.4
  2. B.
    5.4
  3. C.
    8.4
  4. D.
    9.4
A
分析:由四边形ABCD是平行四边形,即可得AB=CD=4,AD=BC=3,AB∥CD,OA=OC,则易证△ECO≌△FAO,根据全等三角形的对应边相等,即可得AF=CE,OE=OF=1.3,然后求得平行四边形ABCD的周长与四边形BCEF的周长,继而求得答案.
解答:∵四边形ABCD是平行四边形,
∴AB=CD=4,AD=BC=3,AB∥CD,OA=OC,
∴∠CEO=∠AFO,∠ECO=∠FAO,
∴△ECO≌△FAO,
∴AF=CE,OE=OF=1.3,
∴EF=2.6,
∴四边形BCEF的周长为:BC+CE+EF+BF=BC+AF+BF+EF=BC+AB+EF=4+3+2.6=9.6,
四边形ABCD的周长为:AB+BC+CD+AD=14,
∴平行四边形ABCD的周长与四边形BCEF的周长之差为:14-9.6=4.4.
故选A.
点评:此题考查了平行四边形的性质与全等三角形的判定与性质.此题比较简单,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

操作1:如图1,一三角形纸片ABC,分别取AB、AC的中点D、E,连接DE,沿DE将纸片剪开,并将其中的△ADE纸片绕点E旋转180°后可拼合(无重叠无缝隙)成平行四边形纸片BCFD.
操作2:如图2,一平行四边形纸片ABCD,E、F、G、H分别是AB、BC、CD、AD边的中点,沿EF剪开并将其中的△BFE纸片绕点E旋转180°到△AF1E位置;沿HG剪开并将其中的△DGH纸片绕点H旋转180°到△AG1H位置;沿FG剪开并将△CFG纸片放置于△AF1G1的位置,此时四张纸片恰好拼合(无重叠无缝隙)成四边形FF1G1G.则四边形FF1G1G的形状是
 

精英家教网
操作、思考并探究:
(1)如图3,如果四边形ABCD是任意四边形(不是梯形或平行四边形)的纸片,E、F、G、H分别是AB、BC、CD、AD的中点.依次沿EF、FG、GH、HE剪开得到四边形纸片EFGH.请判断四边形纸片EFGH的形状,并说明理由.
(2)你能将上述四边形纸片ABCD经过恰当地剪切后拼合(无重叠无缝隙)成一个平行四边形纸片?请在图4上画出对应的示意图.
精英家教网
(3)如图5,E、F、G、H分别是四边形ABCD各边的中点,若△AEH、△BEF、△CFG、△DGH的面积分别为S1、S2、S3、S4,且S1=2,S3=5,则四边形ABCD是面积是
 
.(不要求说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的 对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的 右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等 (即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等 (即这四条线段能构成平行四边形)?请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市西城区九年级一模数学卷(带解析) 题型:解答题

巳知二次函数ya(x2-6x+8)(a>0)的图象与x轴分别交于点AB,与y轴交于点C.点D是抛物线的顶点.

(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点EF的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PAPBPCPD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PAPBPCPD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(广西钦州卷)数学 题型:解答题

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:期末题 题型:解答题

(1)操作1:如图1,一三角形纸片ABC,分别取AB、AC的中点D、E,连接DE,沿DE将纸片剪开,并将其中的△ADE纸片绕点E旋转180°后可拼合(无重叠无缝隙)成平行四边形纸片BCFD。
操作2:如图2,一平行四边形纸片ABCD,E、F、G、H分别是AB、BC、CD、AD边的中点,沿EF剪开并将其中的△BFE纸片绕点E旋转180°到△AF1E位置;沿HG剪开并将其中的△DGH纸片绕点H旋转180°到△AG1H位置;沿FG剪开并将△CFG纸片放置于△AF1G1的位置,此时四张纸片恰好拼合(无重叠无缝隙)成四边形FF1G1G。则四边形FF1G1G的形状是(      )。
操作、思考并探究:
(2)如图3,如果四边形ABCD是任意四边形(不是梯形或平行四边形)的纸片,E、F、G、H分别是AB、BC、CD、AD的中点。依次沿EF、FG、GH、HE剪开得到四边形纸片EFGH。 请判断四边形纸片EFGH的形状,并说明理由。
(3)你能将上述四边形纸片ABCD经过恰当地剪切后拼合(无重叠无缝隙)成一个平行四边形纸片?请在图4上画出对应的示意图。
(4)如图5,E、F、G、H分别是四边形ABCD各边的中点,若△AEH、△BEF、△CFG、△DGH的面积分别为S1、S2、S3、S4,且S1=2 ,S3=5 ,则四边形ABCD是面积是(      )。(不要求说明理由)

查看答案和解析>>

同步练习册答案