ÈçͼËùʾ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬¾ØÐÎABCDµÄ±ßADÔÚxÖáÉÏ£¬µãAÔÚÔ­µã£¬AB=3£¬AD=5¡£Èô¾ØÐÎÒÔÿÃë2¸öµ¥Î»³¤¶ÈÑØxÖáÕý·½Ïò×÷ÔÈËÙÔ˶¯£¬Í¬Ê±µãP´ÓAµã³ö·¢ÒÔÿÃë1¸öµ¥Î»³¤¶ÈÑØA-B-C-DµÄ·Ïß×÷ÔÈËÙÔ˶¯£¬µ±PµãÔ˶¯µ½DµãʱֹͣÔ˶¯£¬¾ØÐÎABCDÒ²ËæÖ®Í£Ö¹Ô˶¯¡£

£¨1£©ÇóPµã´ÓAµãÔ˶¯µ½DµãËùÐèµÄʱ¼ä£»
£¨2£©ÉèPµãÔ˶¯Ê±¼äΪt£¨Ã룩¡£
¢Ùµ±t=5ʱ£¬Çó³öµãPµÄ×ø±ê£»
¢ÚÈô¨SOAPµÄÃæ»ýΪs£¬ÊÔÇó³ösÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£¨²¢Ð´³öÏàÓ¦µÄ×Ô±äÁ¿tµÄȡֵ·¶Î§£©¡£
½â£º£¨1£©Pµã´ÓAµãÔ˶¯µ½DµãËùÐèµÄʱ¼ä=£¨3+5+3£©¡Â1=11£¨Ã룩£»
£¨2£©¢Ùµ±t=5ʱ£¬Pµã´ÓAµãÔ˶¯µ½BCÉÏ£¬
´ËʱOA=10£¬AB+BP=5£¬
¡àBP=2£¬
¹ýµãP×÷PE¡ÍADÓÚµãE£¬ÔòPE=AB=3£¬AE=BP=2£¬
¡àOD=OA+AE=10+2=12£¬
¡àµãPµÄ×ø±êΪ£¨12£¬3£©£»
¢Ú·ÖÈýÖÖÇé¿ö£º
i£®µ±0£¼t¡Ü3ʱ£¬µãPÔÚABÉÏÔ˶¯£¬´ËʱOA=2t£¬AP=t£¬
¡às=¡Á2t¡Át=t2£»
ii£®µ±3£¼t¡Ü8ʱ£¬µãPÔÚABÉÏÔ˶¯£¬´ËʱOA=2t£¬
¡às=¡Á2t¡Á3=3t£»
iii£®µ±8£¼t£¼11ʱ£¬µãPÔÚCDÉÏÔ˶¯£¬´ËʱOA=2t£¬AB+BC+CP=t£¬
¡àDP=£¨AB+BC+CD£©-£¨AB+BC+CP£©=11-t£¬
¡às=¡Á2t¡Á£¨11-t£©=-t2+11t£¬
×ÛÉÏËùÊö£¬sÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½ÊÇ£º
µ±0£¼t¡Ü3ʱ£¬s=t2£»
µ±3£¼t¡Ü8ʱ£¬s=3t£»
µ±8£¼t£¼11ʱ£¬s=-t2+11t¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬OΪԭµã£¬µãAµÄ×ø±êΪ£¨10£¬0£©£¬µãBÔÚµÚÒ»ÏóÏÞÄÚ£¬BO=5£¬¾«Ó¢¼Ò½ÌÍøsin¡ÏBOA=
35
£®
Ç󣺣¨1£©µãBµÄ×ø±ê£»£¨2£©cos¡ÏBAOµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•´ó·áÊÐһ죩ÈçͼËùʾ£¬ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬º¯Êýy=
mx
(x£¾0£¬mÊdz£Êý)
µÄͼÏó¾­¹ýA£¨1£¬4£©£¬B£¨a£¬b£©£¬ÆäÖÐa£¾1£®¹ýµãA×÷xÖá´¹Ïߣ¬´¹×ãΪC£¬¹ýµãB×÷yÖá´¹Ïߣ¬´¹×ãΪD£¬Á¬½ÓAD¡¢DC¡¢CB£®
£¨1£©Èô¡÷ABDµÄÃæ»ýΪ4£¬ÇóµãBµÄ×ø±ê£»
£¨2£©ÇóÖ¤£ºDC¡ÎAB£»
£¨3£©ËıßÐÎABCDÄÜ·ñΪÁâÐΣ¿Èç¹ûÄÜ£¬ÇëÇó³öËıßÐÎABCDΪÁâÐÎʱ£¬Ö±ÏßABµÄº¯Êý½âÎöʽ£»Èç¹û²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬º¯ÊýµÄͼÏó¾­¹ýA(1£¬4)£¬B(a£¬b)£¬ÆäÖÐa>1£®¹ýµãA×÷xÖá´¹Ïߣ¬´¹×ãΪC£¬¹ýµãB×÷yÖá´¹Ïߣ¬´¹×ãΪD£¬Á¬½áAD¡¢DC¡¢CB£®

1.Èô¡÷ABDµÄÃæ»ýΪ4£¬ÇóµãBµÄ×ø±ê

2.ÇóÖ¤£ºDC¡ÎAB

3.ËıßÐÎABCDÄÜ·ñΪÁâÐΣ¿Èç¹ûÄÜ£¬ÇëÇó³öËıßÐÎABCD ΪÁâÐÎʱ£¬Ö±ÏßABµÄº¯Êý½âÎöʽ£»Èç¹û²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬º¯ÊýµÄͼÏó¾­¹ýA(1£¬4)£¬B(a£¬b)£¬ÆäÖÐa>1£®¹ýµãA×÷xÖá´¹Ïߣ¬´¹×ãΪC£¬¹ýµãB×÷yÖá´¹Ïߣ¬´¹×ãΪD£¬Á¬½áAD¡¢DC¡¢CB£®

¡¾Ð¡Ìâ1¡¿Èô¡÷ABDµÄÃæ»ýΪ4£¬ÇóµãBµÄ×ø±ê
¡¾Ð¡Ìâ2¡¿ÇóÖ¤£ºDC¡ÎAB
¡¾Ð¡Ìâ3¡¿ËıßÐÎABCDÄÜ·ñΪÁâÐΣ¿Èç¹ûÄÜ£¬ÇëÇó³öËıßÐÎABCD ΪÁâÐÎʱ£¬Ö±ÏßABµÄº¯Êý½âÎöʽ£»Èç¹û²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012Äê½­ËÕÊ¡ÑγÇÊдó·áÊÐÖп¼ÊýѧһģÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÈçͼËùʾ£¬ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬º¯ÊýµÄͼÏó¾­¹ýA£¨1£¬4£©£¬B£¨a£¬b£©£¬ÆäÖÐa£¾1£®¹ýµãA×÷xÖá´¹Ïߣ¬´¹×ãΪC£¬¹ýµãB×÷yÖá´¹Ïߣ¬´¹×ãΪD£¬Á¬½ÓAD¡¢DC¡¢CB£®
£¨1£©Èô¡÷ABDµÄÃæ»ýΪ4£¬ÇóµãBµÄ×ø±ê£»
£¨2£©ÇóÖ¤£ºDC¡ÎAB£»
£¨3£©ËıßÐÎABCDÄÜ·ñΪÁâÐΣ¿Èç¹ûÄÜ£¬ÇëÇó³öËıßÐÎABCDΪÁâÐÎʱ£¬Ö±ÏßABµÄº¯Êý½âÎöʽ£»Èç¹û²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸