【题目】如图在数轴上点表示数,点表示数,且、满足
点表示的数为________;点表示的数为________.
若点与点之间的距离表示为,点与点之间的距离表示为,请在数轴上找一点,使,则点表示的数________.
若在原点处放一挡板,一小球甲从点处以个单位/秒的速度向左运动;同时另一小球乙从点处以个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为(秒),请分别表示出甲、乙两小球到原点的距离(用含的代数式表示).
【答案】(1)-5,7;(2)4或13;(3)当0≤t≤3.5时,小球到原点的距离为7﹣2t,当t>3.5时小球到原点的距离为2t﹣7.
【解析】
(1)根据非负数的性质列方程求出a、b的值,从而得解;
(2)根据两点间距离的表示列出绝对值方程,然后求解即可;
(3)甲小球根据数轴上的数向左减表示即可,乙小球分向左与向右移动两个部分分别列式表示即可.
(1)由题意得,a+5=0,b﹣7=0,
解得a=﹣5,b=7,
所以,点A表示﹣5,点B表示7;
(2)设点C表示x,由题意得,|﹣5﹣x|=3|7﹣x|,
所以,5+x=3(7﹣x)或5+x=﹣3(7﹣x),
解得x=4,或x=13,
所以,点C表示的数为4或13;
(3)甲:∵小球甲从点A处以1个单位/秒的速度向左运动,
∴甲到原点的距离为|﹣5﹣t|=5+t,
∵小球乙从点B处以2个单位/秒的速度也向左运动,
∴乙到达原点的时间为7÷2=3.5,
∴当0≤t≤3.5时,小球到原点的距离为7﹣2t,
当t>3.5时小球到原点的距离为2t﹣7.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC 且AD = 9cm,BC = 6cm,点P、Q分别从点A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上(E不与A、B重合),连接EF、CF,则下列结论中一定成立的是 ( )
①∠DCF=∠BCD;②EF=CF;③;④∠DFE=4∠AEF.
A. ①②③④ B. ①②③ C. ①② D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.
(1)求证:四边形BFDE是平行四边形.
(2)若四边形BFDE是菱形,BE =2,求菱形BFDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】福鼎市南溪水库的警戒水位是,以下是南溪水库管理处七月份某周监测到的水位变化情况,上周末恰好达到警戒水位(正数表示比前一天水位高,负数表示比前一天水位低).
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位变化 |
星期四的水位是多少?
从这周一到周日哪天的水位是最高的?
以警戒水位为零点,用折线图表表示本周水位情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在处,规定向北方向为正,当天行驶纪录如下(单位:千米)
,,,,,,,
在岗亭何方?距岗亭多远?
在行驶过程中,最远处离出发点有多远?
若摩托车行驶千米耗油升,这一天共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,AE与BF相交于点O,连接EF
(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,CE=,求□ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.
(1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数是多少?
(3)从下到上前多少个台阶上数的和为30.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com