精英家教网 > 初中数学 > 题目详情
9.如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=6.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=4$\sqrt{3}$.

分析 先求出DE=2,CE=4,再根据翻折变换的性质可得PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE=∠PFE,然后根据直角三角形30°角所对的直角边等于斜边的一半求出∠DPE=30°,从而得到∠DPF,根据两直线平行,同旁内角互补求出∠CFP,再求出∠CFE=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出EF,利用勾股定理列式求出FC,从而得解.

解答 解:∵DC=3DE=6,
∴DE=2,CE=4,
由翻折变换得,PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE=∠PFE,
所以,在Rt△DPE中,∠DPE=30°,
所以,∠DPF=∠EPF+∠DPE=90°+30°=120°,
∵矩形对边AD∥BC,
∴∠CFP=180°-∠DPF=180°-120°=60°,
∴∠CFE=$\frac{1}{2}$∠CFP=$\frac{1}{2}$×60°=30°,
∴EF=2CE=2×4=8,
在Rt△CEF中,根据勾股定理得,FC=$\sqrt{E{F}^{2}-C{E}^{2}}$=$\sqrt{{8}^{2}-{4}^{2}}$=4$\sqrt{3}$.
故答案为:4$\sqrt{3}$.

点评 本题考查了翻折变换的性质,矩形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并确定出直角三角形中30°的角是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.现有一组有规律的数:1,-1,$\sqrt{2}$,-$\sqrt{2}$,$\sqrt{3}$,-$\sqrt{3}$,1,-1,$\sqrt{2}$,-$\sqrt{2}$,$\sqrt{3}$,-$\sqrt{3}$…其中1,-1,$\sqrt{2}$,-$\sqrt{2}$,$\sqrt{3}$,-$\sqrt{3}$这六个数按此规律重复出现.
(1)第50个数是什么数?
(2)把从第1个数开始的前2017个数相加,结果是多少?
(3)从第1个数起,把连续若干个数的平方相加起来,如果和为520,那么一共是多少个数的平方相加?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知$\sqrt{13}$的整数部分为a,小数部分为b,则a=3,b=$\sqrt{13}$-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,AB∥CD∥EF,CB∥DE∥FG,如果∠1=70°,则∠3的度数为110°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,直线y=-2x+1与y轴交于点B,与双曲线y=$\frac{k}{x}$交于点C,作CA⊥x轴于A,AB=$\sqrt{5}$,点D(n,2)在双曲线上,
(1)求k和n的值;
(2)在x轴上确定点M,使DM=DC,求点M的坐标;
(3)点P、Q分别在x轴和双曲线上,若以P、Q、C、D为顶点的四边形为平行四边形,画出示意图并直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.比较大小:$\frac{\sqrt{5}-2}{3}$>$\sqrt{5}$-3(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:($\frac{1}{2017}$)-1-(π-3.14)0-$\sqrt{12}$+2sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)计算:2sin60°×$\sqrt{12}$-($\sqrt{2}$-1)0
(2)化简:$\frac{a}{a+1}$-$\frac{a-1}{a}$÷$\frac{{a}^{2}-1}{{a}^{2}-2a}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列说法①2是8的立方根;②±4是64的立方根;③-$\frac{1}{3}$是-$\frac{1}{27}$的立方根;④(-4)3的立方根是-4,其中正确的说法有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案