分析 (1)利用△ABD、△AEC都是等边三角形,求证△DAC≌△BAE,然后即可得出BE=DC.
(2)根据题意得到结论;
(3)根据△DAC≌△BAE,得出∠ADC=∠ABE,再根据三角形的外角得出∠DPE=∠BDP+∠DBP=120°,最后根据平角的性质求出∠1的度数.
解答
解:(1)过点D作DM⊥BE,CN⊥BE,
∵△ABD、△AEC都是等边三角形,
∴AD=AB,AE=AC,∠DAB=∠CAE=60°,
∴∠DAC=∠BAC+60°,
∠BAE=∠BAC+60°,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
$\left\{\begin{array}{l}{AD=AB}\\{∠DAC=∠BAE}\\{AE=AC}\end{array}\right.$,
∴△DAC≌△BAE(SAS),
∴BE=DC.
(2)∠1=60°;
故答案为:60;
(3)∵△DAC≌△BAE,
∴∠ADC=∠ABE,
∵∠DPE=∠BDP+∠DBP
=∠BDP+∠DBA+∠ABE
=∠BDP+∠ADC+∠DBA
=60°+60°
=120°,
∴∠1=180°-120°=60°.
点评 此题考查了全等三角形的判定与性质和等边三角形的性质,用到的知识点是解直角三角形、全等三角形的判定与性质、等边三角形的性质、三角形的内角和定理、对顶角相等,关键是能在较复杂的图形中找出全等的三角形.
科目:初中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 3 | C. | 2 | D. | $\frac{2\sqrt{15}}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com