精英家教网 > 初中数学 > 题目详情
16.△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.

(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当S△DEF=$\frac{1}{4}$S△ABC时,求线段EF的长.

分析 (1)根据等腰三角形的性质以及相似三角形的判定得出相似三角形即可;
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出BD:DF=EC:DE,进而得出△BDF∽△CED∽△DEF.
(3)首先利用△DEF的面积等于△ABC的面积的$\frac{1}{4}$,求出DH的长,进而利用S△DEF的值求出EF即可.

解答 解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
理由如下:∵AB=AC,D为BC的中点,
∴AD⊥BC,∠B=∠C,∠BAD=∠CAD,
又∵∠MDN=∠B,
∴△ADE∽△ABD,
同理可得:△ADE∽△ACD,
∵∠MDN=∠C=∠B,
∠B+∠BAD=90°,∠ADE+∠EDC=90°,
∠B=∠MDN,
∴∠BAD=∠EDC,
∵∠B=∠C,
∴△ABD∽△DCE,
∴△ADE∽△DCE,

(2)△BDF∽△CED∽△DEF,
证明:∵∠B+∠BDF+∠BFD=180°
∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,∴∠BFD=∠CDE,
由AB=AC,得∠B=∠C,
∴△BDF∽△CED,
∴$\frac{BD}{DF}$=$\frac{EC}{DE}$
∵BD=CD,
∴$\frac{CD}{DF}$=$\frac{EC}{DE}$.
又∵∠C=∠EDF,
∴△BDF∽△CED∽△DEF.  

(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.
∵AB=AC,D是BC的中点,
∴AD⊥BC,BD=$\frac{1}{2}$BC=6.
在Rt△ABD中,AD2=AB2-BD2
∴AD=8,
∴S△ABC=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×12×8=48.
S△DEF=$\frac{1}{4}$S△ABC=$\frac{1}{4}$×48=12.
又∵$\frac{1}{2}$AD•BD=$\frac{1}{2}$AB•DH,
∴DH=$\frac{AD•BD}{AB}$=$\frac{8×6}{10}$=4.8,
∵△BDF∽△DEF,
∴∠DFB=∠EFD   
∵DG⊥EF,DH⊥BF,
∴DH=DG=4.8.
∵S△DEF=$\frac{1}{2}$×EF×DG=12,
∴EF=$\frac{12}{\frac{1}{2}DG}$=5.

点评 本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.下列说法不正确的是(  )
A.数据3、5、4、1、-2的中位数是3
B.数据1、1、0、2、4的平均数是2
C.在选举中,人们通常最关心是数据的众数
D.甲乙两人近5次数学考试平均分都是95分,方差分别是2.5和8.5,要选一人参加数学竞赛,选甲比较合适

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:$\sqrt{16}$+(π-2017)0+|-2|-($\frac{1}{3}$)-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.“十三五”开局之年,我市财政总收入达到58400000000元,将这个数用科学记数法表示为5.84×1010

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知抛物线y=$\frac{1}{2}$x2+bx+c(b、c是常数,且c<0)与x轴交于A、B两点(点A在点B的左侧),与y轴的负半轴交于点C,且OB=2OC.
(1)点B的横坐标为(-2c,0),b=c+$\frac{1}{2}$,(上述结果均用含c的代数式表示);
(2)点D是线段OB的中点,若△ACD的面积为3,求抛物线的解析式;
(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连结PB、PC.设△PBC的面积为S. 当S=3时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知抛物线y=x2+bx+c的顶点在x轴上;点A(m,9).B(m+n,9)在它图象上,则:n=±6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.

(1)抽查D厂家的零件为500件,扇形统计图中D厂家对应的圆心角为90°;
(2)抽查C厂家的合格零件为380件,并将图1补充完整;
(3)通过计算说明合格率排在前两名的是哪两个厂家.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.自4月以来,我市推出了一项“共享单车”的便民举措,为人们的城市生活出行带来了方便.图(1)所示的是某款单车的实物图.图(2)是这辆单车的部分几何示意图,其中车支架BC的长为20cm,且∠CBA=75°,∠CAB=30°.求车架档AB的长.(参考数据:sin75°=$\frac{\sqrt{6}+\sqrt{2}}{4}$,cos75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,tan75°=2+$\sqrt{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度-20℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到-4℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至-20℃时,制冷再次停止,…,按照以上方式循环进行.
同学们记录了44min内15个时间点冷柜中的温度y(℃)随时间x(min)的变化情况,制成下表:
 时间x/min 4 810162021222324283036404244
 温度y/℃-20-10-8 -5-4-8-12-16-20-10 -8-5-4 a-20
(1)通过分析发现,冷柜中的温度y是时间x的函数.
①当4≤x<20时,写出一个符合表中数据的函数解析式y=-$\frac{80}{x}$;
②当20≤x<24时,写出一个符合表中数据的函数解析式y=-4x+76;
(2)a的值为-12;
(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当4≤x≤44时温度y随时间x变化的函数图象.

查看答案和解析>>

同步练习册答案