精英家教网 > 初中数学 > 题目详情
2.如图,△ABC中,∠BAC=45°,∠ABC=60°,AB=2$\sqrt{3}$,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值$\frac{3}{2}\sqrt{2}$.

分析 由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=2OE•sin∠EOH=2OE•sin60°,当半径OE最短时,EF最短,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,解直角三角形求直径AD,由圆周角定理可知∠EOH=$\frac{1}{2}$∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂径定理可知EF=2EH,即可求出答案.

解答 解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,
如图,连接OE,OF,过O点作OH⊥EF,垂足为H,
∵在Rt△ADB中,∠ABC=45°,AB=2$\sqrt{3}$,
∴AD=BD=$\sqrt{6}$,即此时圆的半径为$\frac{\sqrt{6}}{2}$,
由圆周角定理可知∠EOH=$\frac{1}{2}$∠EOF=∠BAC=60°,
∴在Rt△EOH中,EH=OE•sin∠EOH=$\frac{\sqrt{6}}{2}$×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{2}}{4}$,
由垂径定理可知EF=2EH=$\frac{3}{2}\sqrt{2}$.
故答案为:$\frac{3}{2}\sqrt{2}$.

点评 本题考查了垂径定理,圆周角定理,解直角三角形的综合运用.关键是根据运动变化,找出满足条件的最小圆,再解直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.拿一张正方形纸片ABCD(如图),取它的四条边的中点E,F,G,H,连接AF,BG,CH,DE.沿这些连线剪4刀,便剪出中间这个较小的正方形(阴影部分).请试一试,若要剪出的小正方形的面积为5平方厘米,则正方形纸片ABCD的边长为5厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.计算:($\sqrt{2}$-$\sqrt{3}$)2016×($\sqrt{2}$+$\sqrt{3}$)2016=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.求下面各式中的x:
(1)x2=4                  
(2)8(x-1)3=27.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.盐城市“创建文明城市”活动如火如荼的展开.某中学为了搞好“创建文明城市”活动的宣传,校学生会就本校学生对盐城“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如下图所示的两幅不完整的统计图(A:59分及以下;B:60-69分;C:70-79分;D:80-89分;E:90-100分).请你根据图中提供的信息解答以下问题:
(1)求该校共有多少名学生;
(2)将条形统计图补充完整;
(3)在扇形统计图中,计算出“60-69分”部分所对应的圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.一个大小为10升的容器盛满一种与水不会起化学反应的纯药液,第一次倒出若干升后,用水加满;等混合均匀后,第二次又倒出与第一次同样体积的溶液,这时容器中只剩下纯药液2.5升,毎次倒出的液体为5升.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,DE:BC=1:3,那么EF:AB的值为$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)(+7)+(-3)
(2)-9÷3+2×3-5
(3)99$\frac{13}{14}$×(-7)
 (4)-2÷[(-$\frac{2}{3}$)2×(-3)3-|-2|-(-4)].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,AB=AC=5cm,BC+8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;
(1)求证:△ABP∽△PCM;
(2)设BP=x,CM=y,求y与x的函数解析式;
(3)当△APM为等腰三角形时,求PB的长.

查看答案和解析>>

同步练习册答案