精英家教网 > 初中数学 > 题目详情

如图,等边△ABC中,AB=6,D、E分别为AB、AC上的点,将△ADE沿DE折叠,使点A落在BC边上的点F处,若CF=2BF,则AE的长为________.


分析:根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设AD=DF=x,AE=EF=y,求出∠DFB=∠FEC,证△DBF∽△FCE,得出==,代入得到==,求出即可.
解答:∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,AB=BC=AC=6,
∵沿DE折叠A落在BC边上的点F上,
∴△ADE≌△FDE,
∴∠DFE=∠A=60°,AD=DF,AE=EF,
设AD=DF=x,AE=EF=y,
则CE=6-y,
∵CF=2BF,BC=6,
∴BF=2,CF=4,
∵∠C=60°,∠DFE=60°,
∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,
∴∠DFB=∠FEC,
∵∠C=∠B,
∴△DBF∽△FCE,
==
==

解得:x=2.8,y=
AE=
故答案为:
点评:本题考查了等边三角形性质,折叠性质,相似三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

30、如图,等边△ABC中,E,D在AB,AC上,且EB=AD,BD与EC交于点F,则∠DFC=
60
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.
(1)求证:AE=CF;
(2)G为CF延长线上一点,连接BG.若BG=5,BC=8,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,D、E、F分别是各边上的一点,且AD=BE=CF.
求证:△DEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,D是BC上一点,以AD为边作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°,求∠FDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,AD=CE,BD和AE相交于F,BG⊥AE垂足为G,求∠FBG的度数.

查看答案和解析>>

同步练习册答案