分析 (1)根据矩形的性质、轴对称的性质可得到AD=EC,AE=DC,即可证到△DEC≌△EDA(SSS);
(2)易证AF=CF,设DF=x,则有AF=4-x,然后在Rt△ADF中运用勾股定理就可求出DF的长.
(3)根据三角形的内角和定理求得∠APF=∠AFP根据等角对等边得出AF=AP进而得出FC=AP,从而证得四边形APCF是平行四边形,又因为FP⊥AC证得四边形APCF为菱形,然后根据菱形的面积S菱形=$\frac{1}{2}$PF•AC=AP•AD,即可求得.
解答 (1)
证明:∵四边形ABCD是矩形,
∴AD=BC,AB=CD,AB∥CD,
∴∠ACD=∠CAB,
∵△AEC由△ABC翻折得到,
∴AB=AE,BC=EC,∠CAE=∠CAB,
∴AD=CE,DC=EA,∠ACD=∠CAE,
在△ADE与△CED中,
$\left\{\begin{array}{l}{AD=CE}\\{DE=ED}\\{D=EA}\end{array}\right.$,
∴△DEC≌△EDA(SSS);
(2)解:如图1,∵∠ACD=∠CAE,
∴AF=CF,
设DF=x,则AF=CF=4-x,
在RT△ADF中,AD2+DF2=AF2,
即32+x2=(4-x)2,
解得;x=$\frac{7}{8}$,
即DF=$\frac{7}{8}$.
(3)解:四边形APCF为菱形,
设AC、FP相较于点O
∵FP⊥AC
∴∠AOF=∠AOP
又∵∠CAE=∠CAB,
∴∠APF=∠AFP
∴AF=AP
∴FC=AP
又∵AB∥CD
∴四边形APCF是平行四边形
又∵FP⊥AC
∴四边形APCF为菱形,
在矩形ABCD中,AB=4,AD=3,
∴AC=5,
∵S菱形=$\frac{1}{2}$PF•AC=AP•AD,
∵AP=AF=4-$\frac{7}{8}$=$\frac{25}{8}$
∴PF=$\frac{2×\frac{25}{8}×3}{5}$=$\frac{15}{4}$.
点评 本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定、轴对称的性质等知识,解决本题的关键是明确折叠的性质,得到相等的线段,角.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 8cm | B. | 10cm | C. | 12cm | D. | 11cm |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com