精英家教网 > 初中数学 > 题目详情

如图所示,四边形ABCD是直角梯形,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向B运动,其中一个动点到达端点时,另一动点也随之停止运动,从运动开始,经过多少时间,四边形PQCD成为等腰梯形?

解:设点Q移动到Q′时,四边形PQCD成为等腰梯形,经过t秒,四边形PQCD成为等腰梯形.
∵AD∥BC,
∴只要Q′C=PD,四边形PQ′CD就为平行四边形,
即3t=24-t,
解得t=6,即当t=6秒时,四边形PQ′CD就是平行四边形.
同理,只要PQ′=CD,PD≠CQ′时,四边形PQCD就是等腰梯形.
从P、D分别作BC的垂线交BC于E、F,则EF=PD,Q′E=FC=26-24=2.
∴2=[3t-(24-t)],
解得,t=7
∴当t=7时,四边形PQCD为等腰梯形.
分析:由题意得AP=t,DP=24-t,CQ=3t,0≤t≤,因为AD∥BC,则根据等腰梯形的判定知,只要当DP≠CQ′、PQ′=CD时,四边形PQCD为等腰梯形,据此列出关于t的方程,解方程即可求得t值.
点评:本题考查了等腰梯形的判定、直角梯形的性质.解答该题时,利用了两腰相等的梯形是等腰梯形来证明四边形PQCD为等腰梯形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图所示,四边形ABCD是平行四边形,E,F分别在AD,CB的延长线上,且DE=BF,连接FE分别交AB,CD于点H,G.
(1)观察图中有
2
对全等三角形;
(2)聪明的你如果还有时间,请在上图中连接AF,CE,你将发现图中出现了更多的全等三角形.请在下面的横线上再写出两对与(1)不同的全等三角形(不用证明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,四边形ABCD为⊙O的内接四边形,E为AB延长线的上一点,∠CBE=40°,则∠AOC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,四边形ABCD中,E、F分别为AD、BC的中点.
(1)当AB∥CD而AD与BC不平行时,四边形ABCD称为
 
形,线段EF叫做其
 
,EF与AB+CD的数量关系为
 

(2)当AB与CD不平行,AD与BC也不平行时,猜想EF与AB+CD的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD是正方形,E、F是AB、BC的中点,连接EC交DB、DF于G、H,则EG:GH:HC=
 
精英家教网

查看答案和解析>>

科目:初中数学 来源:新课标 读想练同步测试 七年级数学(下) 北师大版 题型:044

如图所示,四边形AB-CD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,试说明,无论点P在BC上如何移动,总有α+β=∠B.

查看答案和解析>>

同步练习册答案