精英家教网 > 初中数学 > 题目详情

使得数学公式+数学公式+数学公式=1的一组正整数(a,b,c)为:________.

答案不唯一;如(288,8,8),(48,24,8)
分析:由于三个复合二次根式的和为1,则它们的被开方数为完全平方数,设任意一个复合二次根式的被开方数为(2(x,y为正整数,x>y),然后通过正整数的含义,得到x,y为两个相邻正整数,即每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后是-1,则第二个复合二次根式化简后必为-,第三个复合二次根式化简后必为,最后求的a,b,c的值.
解答:因为几个复合二次根式的和为1,则每个复合二次根式的被开方数一定为完全平方数.设==x+y-2,(x,y为正整数,x>y),所以有=x+y,-=-2
∴a+1=(x+y)2,a=4xy,
∴(x-y)2=1,即x-y=1.
则每个复合二次根式化简后为两个相邻正整数的算术平方根.
若第一个化简后为-1,而要消掉,则第二个复合二次根式化简后必为-要消掉,则第三个复合二次根式化简后必为.最后正好为-=1.
所以=(-1)2=3-=3-,则a=8,
同理得b=24,c=48.
故得到一组正整数(a,b,c)为:8,24,48.
故答案为8,24,48.
点评:本题考查了二次根式的性质和二次根式的化简:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知方程x3-(1+2•3m)x2+(5n+2•3m)x-5n=0.
(1)若n=m=0,求方程的根;
(2)找出一组正整数n,m,使得方程的三个根均为整数;
(3)证明:只有一组正整数n,m,使得方程的三个根均为整数.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察图(1),容易发现图(2)中的∠1=∠2+∠3.把图(2)推广到图(3),其中有8个角:∠1,∠2,…,∠8.可以验证∠1=∠2+∠5+∠8成立.除此之外,恰好还有一组正整数x,y,z,满足2≤x≤y≤z≤8,使得∠1=∠x+∠y+∠z,那么这组正整数(x,y,z)=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(∠AA1B简写做∠i)观察图1,容易发现图2中的∠1=∠2+∠3.把图2推广到图3,其中有8个角:∠1,∠2,∠3,…,∠8.可以验证∠1=∠2+∠5+∠8成立.除此之外,恰好还有一组正整数x,y,z,满足2≤x≤y≤z≤8,使得∠1=∠x+∠y+∠z,那么这组正整数(x,y,z)=
 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知方程x3-(1+2•3m)x2+(5n+2•3m)x-5n=0.
(1)若n=m=0,求方程的根;
(2)找出一组正整数n,m,使得方程的三个根均为整数;
(3)证明:只有一组正整数n,m,使得方程的三个根均为整数.

查看答案和解析>>

同步练习册答案