已知方程ax2+bx+c=0(a≠0)的两根为x1,x2.s1=x12005+x22005,s2=x12004+x22004,s3=x12003+x22003.求as1+bs2+cs3的值.
解:∵x1,x2是方程ax2+bx+c=0(a≠0)的两根.
∴ax12+bx1+c=0,ax22+bx2+c=0
又∵s1=x12005+x22005,s2=x12004+x22004,s3=x12003+x22003
∴as1+bs2+cs3=a(x12005+x22005)+b(x12004+x22004)+c(x12003+x22003)
=ax12005+ax22005+bx12004+bx22004+cx12003+cx22003
=(ax12005+bx12004+cx12003)+(ax22005+bx22004+cx22003)
=x12003(ax12+bx1+c)+x22003(ax22+bx2+c)
=x12003×0+x22003×0
=0
分析:已知方程ax2+bx+c=0(a≠0)的两根为x1,x2,可将根代入方程得ax12+bx1+c=0,ax22+bx2+c=0,再将所得代入下式得as1+bs2+cs3=a(x12005+x22005)+b(x12004+x22004)+c(x12003+x22003)=(ax12005+bx12004+cx12003)+(ax22005+bx22004+cx22003)=x12003(ax12+bx1+c)+x22003(ax22+bx2+c)=x12003×0+x22003×0=0.
点评:本题不仅考查代数式的求值问题,还重点考查了一元二次方程的解得问题,再结合因式分解的方法,化简代数式,本题有点难度,要认真分析,联系已知,要引起注意.