精英家教网 > 初中数学 > 题目详情
如图,AE⊥BC于E,AC为∠BAE的平分线,AD=AE,连接CD,则下列结论不正确的是(  )
A、CD=CE
B、∠ACD=∠ACE
C、∠CDA=90°
D、∠BCD=∠ACD
考点:全等三角形的判定与性质
专题:
分析:根据全等三角形的判定首先得出△ADC≌△AEC,进而得出对应角以及对应边相等,进而得出答案.
解答:解:∵AC为∠BAE的平分线,
∴∠BAC=∠EAC,
在△ADC和△AEC中
AD=AE
∠DAC=∠EAC
AC=AC

∴△ADC≌△AEC(SAS),
∴∠ADC=∠AEC=90°,CD=CE,∠ACD=∠ACE,
故选项A,B,C正确,但无法得到∠BCD=∠ACD,即可得出A,B,C选项不符合题意,D选项符合题意.
故选:D.
点评:此题主要考查了全等三角形的判定与性质,得出△ADC≌△AEC是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

应用题:
景德镇市自来水公司为鼓励居民节约用水,采用分段计费的方法计算水费,收费标准如表所示:
月用水量 不超过12吨的部分 超过12吨不超过18吨的部分 超过18吨的部分
收费标准(元/吨) 2.00 2.50 3.00
(1)写出每户居民应交水费y元与月用量x吨之间的函数关系式.
(2)某老师家第四季度交纳水费情况如下:
月份 10月份 11月份 12月份 合计
交费金额 54元 22元 34元 110元
问该老师家第四季度共用水多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知a∥b,∠1=50°,那么∠2的度数等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:
(1)当每件商品售价定为170元时,每天可销售多少件?获得的日盈利是多少?
(2)若设每件商品的售价涨价x元,请用x的代数式表示每件商品获得盈利和每天销售商品的件数.
(3)商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(a3b23÷(ab22=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

S=1+
3
2
+
5
22
+
7
23
+…+
2×1992+1
21992

查看答案和解析>>

科目:初中数学 来源: 题型:

已知|a-b+1|与
a+2b+4
是互为相反数,且关于x的方程kx2+ax+b=0有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ACB=90°,AC=4,BC=3,把△ABC分别绕直线AC,AB旋转一周,所得几何体的表面积分别为S1,S2,则|S2-S1|=
 
(平方单位).

查看答案和解析>>

科目:初中数学 来源: 题型:

下列二次根式中是最简二次根式的是(  )
A、
11a
B、
1
3
C、
12
D、
3a2

查看答案和解析>>

同步练习册答案