【题目】计算:(1)(-)-(+); (2)(+3.7)-(+6.8);
(3)(-16)-(-10); (4)3.36-4.16.
科目:初中数学 来源: 题型:
【题目】某制造企业有一座对生产设备进行水循环冷却的冷却塔,冷却塔的顶部有一个进水口,3小时恰好可以注满这座空塔,底部有一个出水口,7小时恰好可以放完满塔的水.为了保证安全,塔内剩余水量不得少于全塔水量的 ,出水口一直打开,保证水的循环,进水口根据水位情况定时对冷却塔进行补水.假设每次恰好在剩余水量为满水量的m倍时开始补水,补满后关闭进水口.
(1)当m= 时,请问:两次补水之间相隔多长时间?每次补水需要多长时间?
(2)能否找到适当的m值,使得两次补水的间隔时间和每次的补水时间一样长?如果能,请求出m值;如果不能,请你分析两次补水的间隔时间和每次的补水时间之间的数量关系,并表示出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在已知的ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于 BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )
A.90°
B.95°
C.100°
D.105°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把几个数用大括号括起来,中间用逗号断开,如:{1,2,-3},{-2,7,,19},我们称之为集合,其中的数称为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数5-a也必是这个集合的元素,这样的集合我们称为好的集合.例如集合{5,0}就是一个好的集合.
(1)请你判断集合{1,2},{-2,1,2.5,4,7}是不是好的集合?
(2)请你再写出两个好的集合(不得与上面出现过的集合重复);
(3)写出所有好的集合中,元素个数最少的集合.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一天,龟、兔进行了600米赛跑,如图表示龟兔赛跑的路程s(米)与时间t(分钟)的关系(兔子睡觉前后速度保持不变),根据图象回答以下问题:
(1)赛跑中,兔子共睡了多少时间?
(2)赛跑开始后,乌龟在第几分钟时从睡觉的兔子旁经过?
(3)兔子跑到终点时,乌龟已经到了多长时间?并求兔子赛跑的平均速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.
(1)试说明△PCM≌△QDM.
(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1.纸上有5个边长为1的小正方形组成的纸片,可把它剪拼成一个正方形(图2)
(图3)
拼成的正方体的面积与边长分别是多少?
你能把这十个小正方体组成的图形纸(图3),剪拼成一个大正方形吗?若能,则请画出剪拼成的大正方形,并求出其边长为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:
的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.
连接、,则线段、的位置关系为______,线段、的数量关系为______;
平移过程中,线段AB扫过部分的面积为______平方单位
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com