【题目】(本题满分10分)如图, 是⊙的直径, 为⊙的弦,过点作⊥,交的延长线于点.点在上,且.
(1)求证:直线是⊙的切线;
(2)若, ,求的长.
【答案】(1)答案见解析;(2)7
【解析】试题分析:(1)连结OB.由等腰三角形的性质得到∠A=∠OBA,∠P=∠CBP,由于OP⊥AD,得到∠A+∠P=90°,于是得到∠OBA+∠CBP=90°,求得∠OBC=90°结论可得;
(2)连结DB.由AD是⊙O的直径,得到∠ABD=90°,推出Rt△ABD∽Rt△AOP,得到比例式,即可得到结果.
试题解析:(1)连结OB.
∵OA=OB,∴∠A=∠OBA,
又∵BC=PC,
∴∠P=∠CBP,
∵OP⊥AD,
∴∠A+∠P=90°,
∴∠OBA+∠CBP=90°,
∴∠OBC=180°﹣(∠OBA+∠CBP)=90°,
∵点B在⊙O上,
∴直线BC是⊙O的切线,
(2)如图,连结DB.
∵AD是⊙O的直径,
∴∠ABD=90°,
∴Rt△ABD∽Rt△AOP,
∴,即,AP=9,
∴BP=AP﹣BA=9﹣2=7.
科目:初中数学 来源: 题型:
【题目】下列是平方差公式应用的是( )
A. (x+y)(﹣x﹣y) B. (2a﹣b)(2a+b) C. (﹣m+2n)(m﹣2n) D. (4x+3y)(4y﹣3x)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刚在解数学题时,由于粗心,把原题“两个多项式A和B,试求2A+B,其中B=x2+3x﹣2.”中的“2A+B”错误地看成“A+2B”,结果求出的答案是9x2﹣2x+7.
(1)请你帮他求A;
(2)正确地算出2A+B.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com