解:(1)∵DE是AB的垂直平分线,
∴AF=BF,
∴△BCF的周长为:CF+BF+BC=CF+AF+BC=AC+BC=AB+BC=6;
(2)∵AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°,
∵DE垂直平分AB,
∴∠EDB=90°,
∴∠E=90°-65°=25°.
分析:(1)由AB=AC,AB的垂直平分线DE交BC的延长线于点E,交AC于点F,可得AF=BF,易得△BCF的周长为:CF+BF+BC=CF+AF+BC=AC+BC=AB+BC=6;
(2)由AB=AC,∠A=50°,可求得∠ABC与∠ACB的度数,继而求得∠E的度数.
点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.