精英家教网 > 初中数学 > 题目详情
(1999•福州)已知:如图,AD∥BC,AD=CB,AE=CF.求证:△AFD≌△CEB.

【答案】分析:先根据平行线的性质得出∠A=∠C,根据线段相互间的加减关系求出AF=CE,又AD=CB已知,根据SAS三角形全等的判定定理即可证明△AFD≌△CEB.
解答:证明:∵AE=CF,AE+EF=CF+EF,即AF=CE.
∵AD∥CB,
∴∠A=∠C,
又∵AD=CB,
∴△AFD≌△CEB.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源:1999年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(1999•福州)已知:二次函数y=x2+bx+c的图象经过点A(-1,12)、B(2,-3).
(1)求该二次函数的解析式;
(2)用配方法把由(1)所得的解析式化为y=(x-h)2+k的形式,并求出该抛物线的顶点坐标和对称轴;
(3)求抛物线与x轴的两个交点C、D的坐标及△ACD的面积.

查看答案和解析>>

科目:初中数学 来源:1999年福建省福州市中考数学试卷 题型:解答题

(1999•福州)已知:二次函数y=x2+bx+c的图象经过点A(-1,12)、B(2,-3).
(1)求该二次函数的解析式;
(2)用配方法把由(1)所得的解析式化为y=(x-h)2+k的形式,并求出该抛物线的顶点坐标和对称轴;
(3)求抛物线与x轴的两个交点C、D的坐标及△ACD的面积.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(1999•福州)已知一次函数y=(m为实数)的图象为直线l,l分别交x,y于A,B两点,以坐标原点O为圆心的圆的半径为1.
(1)求A、B两点的坐标(用含m的代数式表示);
(2)设点O到直线l的距离为d,试用含m的代数式表示d,并求出当直线1与⊙O相切时,m的值;
(3)当⊙O被直线l所截得的弦长等于1时,求m的值及直线l与⊙O的交点坐标.

查看答案和解析>>

科目:初中数学 来源:1999年福建省福州市中考数学试卷 题型:填空题

(1999•福州)已知二次函数y=ax2+bx+c的图象大致如图,那么直线y=bx+c不经过第    象限.

查看答案和解析>>

同步练习册答案