精英家教网 > 初中数学 > 题目详情

如图,在图(1)中线段AB与CD互相垂直,垂足为O,图(2)是由图(1)平移后得到的,你能找出下面两图形中存在的相等关系吗?

答案:
解析:

AB=,CD=,AO=,OB=,CO=,OD=,两个图中所有的角都相等.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知:如图,在△ABC中,分别延长中线BE、CD至N、M,使EN=EB,DM=DC,求证:点M、A、N三点在同一条直线上.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

22、阅读理解:
课外兴趣小组活动时,老师提出了如下问题:
如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(1)问题解决:
受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;
(2)问题拓展:
如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•乌鲁木齐)如图.在平面直角坐标系中,边长为
2
的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E.
(1)求证:△OAD≌△EAB;
(2)求过点O、E、B的抛物线所表示的二次函数解析式;
(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;
(4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,点E、F、M、N是AD上的四点,则图中阴影部分的总面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

按要求画图并填空:
(1)△ABC在如图1所示的平面直角坐标系中,将其平移后得△A′B′C′,若B的对应点B′的坐标是(4,1).
①在图中画出△A′B′C′; 
②此次平移可看作将△ABC向
平移了
2
2
个单位长度,再向
平移了
1
1
个单位长度得△A′B′C′;
③△A′B′C′的面积为
10
10

(2)已知:如图2,△ABC,请在图中作出它的角平分线BD,中线CE和BC边上的高AF.
(3)如图3,这是一个动物园游览示意图,试建立一个适当的平面直角坐标系描述这个动物园图中每个景点位置,(画出图形,并写出各景点的坐标). 

查看答案和解析>>

同步练习册答案