精英家教网 > 初中数学 > 题目详情

如图,已知一次函数y1=kx+b与反比例函数的图象交于A(2,4)、B(﹣4,n)两点.

(1)分别求出y1和y2的解析式;
(2)写出y1=y2时,x的值;
(3)写出y1>y2时,x的取值范围.

解:(1)将A(2,4)代入反比例解析式得:m=8,
∴反比例函数解析式为
将B(﹣4,n)代入反比例解析式得:n=﹣2,即B(﹣4,﹣2)。
将A与B坐标代入一次函数解析式得:
,解得:
∴一次函数解析式为y1=x+2。
(2)联立两函数解析式得:
解得:
∴y1=y2时,x的值为2或﹣4。
(3)根据图象和(2)得:y1>y2时,x的取值范围为﹣4<x<0或x>2。

解析试题分析:(1)将A坐标代入反比例解析式中求出m的值,确定出反比例解析式,将B坐标代入反比例解析式求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式。
(2)联立两函数解析式,求出方程组的解即可得到x的值。
(3)由两函数交点坐标,利用图形即可得出所求不等式的解集。 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:

 
甲型收割机的租金
乙型收割机的租金
A地
  1800元/台
  1600元/台
B地
  1600元/台
  1200元/台
(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.
(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知y1与x成正比例,y2与x+2成正比例,且y=y1+y2,当x=2时,y=4;当x=-1时,y=7,求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.

(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).

(1)该植物从观察时起,多少天以后停止长高?
(2)求直线AC的解析式,并求该植物最高长多少厘米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:

x(单位:台)
10
20
30
y(单位:万元∕台)
60
55
50
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

华联超市欲购进A、B两种品牌的书包共400个。已知两种书包的进价和售价如下表所示。设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为w元。

(1)求w关于x的函数关系式;
(2)如果购进两种书包的总费不超过18000元,那么该商场如何进货才能获得最大利润?并求出最大利润。
(提示利润= 售价-进价)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.
(1)试问甲乙两个工程队每天分别修路多少米?
(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?
(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知二次函数y=ax2+bx+c的图象如图,①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1),其中结论正确的有(  )

A.③④B.③⑤C.③④⑤D.②③④⑤

查看答案和解析>>

同步练习册答案