精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC=9,BC=12,∠B=∠C,点D从B出发以每秒2厘米的速度在线段BC上从B向C方向运动,点E同时从C出发以每秒2厘米的速度在线段AC上从C向A运动,连接AD、DE.
(1)运动
3
3
秒时,AE=
1
2
DC(不必说明理由)
(2)运动多少秒时,∠ADE=90°-
1
2
∠BAC,并请说明理由.
分析:(1)设运动的时间是t秒,则CD=12-2t,AE=9-2t,得出方程9-2t=
1
2
(12-2t),求出方程的解即可;
(2)求出∠B=∠C=∠ADE,推出∠BAD=∠EDC,根据AAS证△ABD≌△DCE,推出DC=AB=9即可.
解答:(1)解:设运动的时间是t秒,
则CD=12-2t,AE=9-2t,
9-2t=
1
2
(12-2t)
t=3,
故答案为:3.

(2)解:设x秒后,∠ADE=90°-
1
2
∠BAC,
理由是:∵∠B=∠C=90°-
1
2
∠BAC,
∴∠B=∠C=∠ADE,
∵∠BAD+∠ADB+∠B=180°,∠EDC+∠ADE+∠ADB=180°,
∴∠BAD=∠EDC,
在△ABD和△DCE中,
∠B=∠C
∠BAD=∠CDE
BD=CE

∴△ABD≌△DCE(AAS),
∴DC=AB=9,
∴BD=3,
∴x=
3
2

即运动
3
2
秒时,∠ADE=90°-
1
2
∠BAC.
点评:本题考查了全等三角形的性质和判定,三角形的内角和定理,等腰三角形的性质等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案