精英家教网 > 初中数学 > 题目详情
如图,在直角△ABC中,D为斜边AB的中点,DE⊥DF,而E、F分别在AC和BC上,连结EF.观察AE、EF、BF能不能组成直角三角形.写出你的结论并说明理由.
分析:延长FD到F′,使DF′=DF,连接AF′、EF′,利用“边角边”证明△ADF′和△BDF全等,根据全等三角形对应边相等可得AF′=BF,全等三角形对应角相等可得∠B=∠DAF′,然后求出∠EAF′=90°,再根据线段垂直平分线上的点到线段两端点的距离相等可得EF=EF′,从而得解.
解答:解:如图,延长FD到F′,使DF′=DF,连接AF′、EF′,
∵D为斜边AB的中点,
∴AD=BD,
在△ADF′和△BDF中,
AD=BD
∠ADF′=∠BDF
DF′=DF

∴△ADF′≌△BDF(SAS),
∴AF′=BF,∠B=∠DAF′,
∵∠BAC+∠B=90°,
∴∠BAC+∠DAF′=∠BAC+∠B=90°,
即∠EAF′=90°,
又∵DE⊥DF,
∴EF′=EF,
∴△EAF′是以EF′为斜边的直角三角形,
故AE、EF、BF能组成直角三角形,斜边为EF.
点评:本题考查了直角三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形是解题关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°、AB=6、AC=3,⊙O与边AB相切于点D、与边AC交于点E,连接DE,若DE∥BC,AE=2EC,则⊙O的半径是
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于F,且BE平分∠ABC,则∠A=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,DE垂直平分AB.
(1)求∠B的度数;
(2)若DC=1,求DB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.在直角△ABC中,已知∠ACB=90°,CD⊥AB于点D,则下列关系不一定成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠A=90°,BC边上的垂直平分线交AC于点D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,则△BDE的周长为
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步练习册答案