精英家教网 > 初中数学 > 题目详情

【题目】已知α是锐角,且点A( ,a),B(sin30°+cos30°,b),C(﹣m2+2m﹣2,c)都在二次函数y=﹣x2+x+3的图象上,那么a、b、c的大小关系是(
A.a<b<c
B.a<c<b
C.b<c<a
D.c<b<a

【答案】D
【解析】解:抛物线y=﹣x2+x+3的对称轴是直线x= ,开口向下, 点A( ,a)为顶点,即最高点,
所以,a最大,A、B错误;
又1<sin30°+cos30°<2,﹣m2+2m﹣2=﹣(m﹣1)2﹣1≤﹣1,
可知,B点离对称轴近,C点离对称轴远,
由于抛物线开口向下,
离对称轴越远,函数值越小,c<b,C错误;
故选D.
先计算对称轴为直线x= ,抛物线开口向下,可知A点为顶点(最高点),a最大;再根据B、C两点与对称轴的远近,比较纵坐标的大小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面的文字,解答问题.

大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用-1来表示的小数部分,你同意小明的表示方法吗?

事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.

请解答:已知:10+=x+y,其中x是整数,0<y<1,x-y的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCABC中,AB=AB′,B=B,补充条件后仍不一定能保证ABC≌△ABC,则补充的这个条件是(

A. BC=BC B. A=∠A C. AC=AC D. C=∠C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣ x2+ x+4经过A、B两点.

(1)写出点A、点B的坐标;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;
(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中.

(1)把△ABC平移至点A′的位置,使点A与点A′对应,画出平移后得到的△A′B′C′;

(2)△A′B′C′可以看成是把△ABC如何平移得到的?

(3)写出图中与线段AA′平行且相等的线段(可用字母表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】概念学习

规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.

从三角形不是等腰三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.

理解概念

如图1,在中,,请写出图中两对“等角三角形”概念应用

如图2,在中,CD为角平分线,

求证:CD的等角分割线.

中,CD的等角分割线,直接写出的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成推理过程

如图,AB∥DC,AE⊥BD,CF⊥BD,BF=DE.求证:AE=CF.

证明∵AB∥DC,

∴∠1=

∵AE⊥BD,CF⊥BD,

∴∠AEB=

∵BF=DE,

∴BF﹣EF=DE﹣EF

=

∴△ABE≌△CDF

∴AE=CF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知图1将线段AB向右平移1个单位长度,2是将线段AB折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;

(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩下部分的面积;

(3)如图4,在宽为10 m,长为40 m的长方形菜地上有一条弯曲的小路,小路宽度为1 m,求这块菜地的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用计算器计算:

(1)π-(精确到0.01);

(2) (精确到0.001);

(3)4(精确到0.1);

(4)+()(精确到0.01).

查看答案和解析>>

同步练习册答案