精英家教网 > 初中数学 > 题目详情
3.函数y=$\frac{x+3}{\sqrt{x-2}}$中,自变量x的取值范围是(  )
A.x>2B.x≥-3C.x>-3D.x≥2

分析 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知:x-2>0,解得x的范围.

解答 解:根据题意得:x-2>0,
解得:x>2.
故选A.

点评 本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.若一次函数y=(m+2)x+(m2-4)经过坐标原点,则m=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图放置的△OAB1,△B1A1B2都是边长为2的等边三角形,边AO在y轴上,点B1,B2都在直线y=$\frac{\sqrt{3}}{3}$x上,则点B2的坐标为(2$\sqrt{3}$,2).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图是一个底面直径为10,母线OE长也为10的圆锥,A是母线OF上的一点,FA=2,从点E沿圆锥侧面到点A的最短路径长是2$\sqrt{41}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.若点A(-1,2),B(2,-3)在直线y=kx+b上,则函数y=$\frac{k}{x}$的图象在(  )
A.第一、三象限B.第一、二象限C.第二、四象限D.第二、三象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.正比例函数y=2x的图象与反比例函数y=$\frac{k}{x}$的图象交于A、B两点,过点A作AC垂直x轴于点C,连接BC.若△ABC的面积为2.
(1)求反比例函数的关系式;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一个圆锥的侧面展开图是半径为R的半圆,该圆锥的高是$\frac{\sqrt{3}}{2}$R.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.把下面的说理过程补充完整:
如图,已知:∠AED=∠C,∠3=∠B.试判断∠1与∠2的数量关系,并说明理由.(注:理由中的符号“∵”表示“因为”,“∴”表示“所以”)
解:∠1+∠2=180°.理由如下:
∵∠AED=∠C(已知)
∴DE∥BC.(同位角相等,两直线平行)
∴∠B=∠ADE.(两直线平行,同位角相等)
∵∠3=∠B(已知)
∴∠3=∠ADE.(等量代换)
∴EF∥AB.(内错角相等,两直线平行)
∴∠2+∠ADF=180°.(两直线平行,同旁内角互补)
∵∠1=∠ADF.(对顶角相等)
∴∠1+∠2=180°.(等量代换)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,反比例函数y=$\frac{k}{x}$的图象与一次函数y=-x-1的图象的一个交点为A(-2,a).
(1)求反比例函数的表达式;
(2)请直接写出不等式$\frac{k}{x}$>-x-1的解集;
(3)若一次函数=-x-1与x轴交于点B,与y轴交于点C,点P是反比例函数y=$\frac{k}{x}$图象上一点,且S△BOP=4S△OBC,求点P的坐标.

查看答案和解析>>

同步练习册答案