精英家教网 > 初中数学 > 题目详情
(2013•福州)我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)
(1)对于这样的抛物线:
当顶点坐标为(1,1)时,a=
-1
-1

当顶点坐标为(m,m),m≠0时,a与m之间的关系式是
a=-
1
m
或am+1=0
a=-
1
m
或am+1=0

(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;
(3)现有一组过原点的抛物线,顶点A1,A2,…,An在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过Dn,求所有满足条件的正方形边长.
分析:(1)利用顶点坐标公式(-
b
2a
4ac-b2
4a
)填空;
(2)首先,利用配方法得到抛物线的解析式y=a(x+
b
2a
2-
b2
4a
,则易求该抛物线的顶点坐标(-
b
2a
,-
b2
4a
);
然后,把该顶点坐标代入直线方程y=kx(k≠0),即可求得用含k的代数式表示b;
(3)根据题意可设可设An(n,n),点Dn所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点Dn所在的抛物线解析式为y=-
1
t
x2+2x.所以由正方形的性质推知点Dn的坐标是(2n,n),则把点Dn的坐标代入抛物线解析式即可求得4n=3t.然后由n、t的取值范围来求点An的坐标,即该正方形的边长.
解答:解:(1)∵顶点坐标为(1,1),
-
b
2a
=1
-b2
4a
=1

解得,
a=-1
b=2

即当顶点坐标为(1,1)时,a=-1;
当顶点坐标为(m,m),m≠0时,
-
b
2a
=m
-b2
4a
=m

解得,
a=-
1
m
b=2

则a与m之间的关系式是:a=-
1
m
或am+1=0.
故答案是:-1;a=-
1
m
或am+1=0.

(2)∵a≠0,
∴y=ax2+bx=a(x+
b
2a
2-
b2
4a

∴顶点坐标是(-
b
2a
,-
b2
4a
).
又∵该顶点在直线y=kx(k≠0)上,
∴k(-
b
2a
)=-
b2
4a

∵b≠0,
∴b=2k;

(3)∵顶点A1,A2,…,An在直线y=x上,
∴可设An(n,n),点Dn所在的抛物线顶点坐标为(t,t).
由(1)(2)可得,点Dn所在的抛物线解析式为y=-
1
t
x2+2x.
∵四边形AnBnCnDn是正方形,
∴点Dn的坐标是(2n,n),
∴-
1
t
(2n)2+2•2n=n,
∴4n=3t.
∵t、n是正整数,且t≤12,n≤12,
∴n=3,6或9.
∴满足条件的正方形边长是3,6或9.
点评:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答(3)题时,要注意n的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是
1000
1000

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•福州质检)(1)计算:(π+3)0-|-2013|+
64
×
1
8

(2)已知a2+2a=-1,求2a(a+1)-(a+2)(a-2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•福州质检)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.
(1)求抛物线解析式;
(2)BC的垂直平分线交抛物线于D、E两点,求直线DE的解析式;
(3)若点P在抛物线的对称轴上,且∠CPB=∠CAB,求出所有满足条件的P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•福州)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:
身高情况分组表(单位:cm)
组别 身高
A x<155
B 155≤x<160
C 160≤x<165
D 165≤x<170
E x≥170
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在
B
B
组,中位数在
C
C
组;
(2)样本中,女生身高在E组的人数有
2
2
人;
(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?

查看答案和解析>>

同步练习册答案