精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,直线x=﹣4交x轴于点C,交抛物线于点D.

(1)求该抛物线的解析式;
(2)点P在抛物线上,点E在直线x=﹣4上,若以A,O,E,P为顶点的四边形是平行四边形,求点P的坐标;
(3)若B,D,C三点到同一条直线的距离分别是d1,d2,d3,问是否存在直线l,使?若存在,请直接写出d3的值;若不存在,请说明理由.

解:(1)∵抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,
,解得:
∴抛物线的解析式为
(2)∵点P在抛物线上,点E在直线x=﹣4上,
设点P的坐标为(m,,点E的坐标为(﹣4,n),
如图1,∵点A(﹣8,0),∴AO=8。

①当AO为一边时,EP∥AO,且EP=AO=8,
∴|m+4|=8,解得:m1=﹣12,m2=4。
∴P1(﹣12,14),P2(4,6)。
②当AO为对角线时,则点P和点E必关于点C成中心对称,故CE=CP。
,解得:
∴P3(﹣4,﹣6)。
综上所述,当P1(﹣12,14),P2(4,6),P3(﹣4,﹣6)时,A,O,E,P为顶点的四边形是平行四边形。
(3)存在4条符合条件的直线。d3的值为

解析试题分析:(1)利用待定系数法求出抛物线的解析式。
(2)平行四边形可能有多种情形,如答图1所述,需要分类讨论:
①以AO为一边的平行四边形,有2个;
②以AO为对角线的平行四边形,有1个,此时点P和点E必关于点C成中心对称。
(3)存在4条符合条件的直线。
如图2所示,连接BD,过点C作CH⊥BD于点H,

由题意得C(﹣4,0),B(2,0),D(﹣4,﹣6),
∴OC=4,OB=2,CD=6。∴△CDB为等腰直角三角形。
∴CH=CD•sin45°=6×=
∵BD=2CH,∴BD=
①∵CO:OB=2:1,
∴过点O且平行于BD的直线l1满足条件。
作BE⊥直线l1于点E,DF⊥直线l1于点F,设CH交直线l1于点G,
∴BE=DF,即:d1=d2
,即,∴d3=2d1,∴
∴CG=CH,即d3=
②如图2,在△CDB外作直线l2∥DB,延长CH交l2于点G′,使CH=HG′,
∴d3=CG′=2CH=
③如图3,过H,O作直线l3,作BE⊥l3于点E,DF⊥l3于点F,CG⊥l3于点G,

由①可知,DH=BH,则BE=DF,即:d1=d2
∵CO:OB=2:1,∴
作HI⊥x轴于点I,
∴HI=CI=CB=3,∴OI=4﹣3=1。

∵△OCH的面积=×4×3=×d3,∴d3=
④如图3,根据等腰直角三角形的对称性,可作出直线l4,易证:
,d3=
综上所述,存在直线l,使.d3的值为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知二次函数的图象以为顶点,且过点
(1)求该二次函数的解析式;
(2)求该二次函数图象与坐标轴的交点坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.

(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.

(1)请直接写出点D的坐标:     
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中点坐标为.由勾股定理得,所以A、B两点间的距离公式为
注:上述公式对A、B在平面直角坐标系中其它位置也成立.
解答下列问题:

如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.
(1)求A、B两点的坐标及C点的坐标;
(2)连结AB、AC,求证△ABC为直角三角形;
(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将△BCD沿BD折叠(D点在OC边上),使C点落在DA边的E点上,并将△BAE沿BE折叠,恰好使点A落在BD边的F点上.

(1)求BC的长,并求折痕BD所在直线的函数解析式;
(2)过点F作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B,H, D三点,求抛物线解析式;
(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过点P作PN⊥BC,分别交BC 和 BD于点N, M,是否存在这样的点P,使如果存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,已知抛物线y=﹣2x2﹣4x的图象E,将其向右平移两个单位后得到图象F.

(1)求图象F所表示的抛物线的解析式:
(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川资阳12分)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).

(1)求抛物线的解析式;
(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;
(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.

时段
 
x
 
还车数(辆)
 
借车数(辆)
 
存量y(辆)
 
6:00﹣7:00
 
1
 
45
 
5
 
100
 
7:00﹣8:00
 
2
 
43
 
11
 
n
 

 

 

 

 

 
根据所给图表信息,解决下列问题:
(1)m=   ,解释m的实际意义:   
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知9:00~10:00这个时段的还车数比借车数的3倍少4,求此时段的借车数.

查看答案和解析>>

同步练习册答案