19£®ÒÑÖª·´±ÈÀýº¯Êýy1=$\frac{k}{x}$ºÍ¶þ´Îº¯Êýy2=-x2+bx+cµÄͼÏó¶¼¹ýµãA£¨-1£¬2£©
£¨1£©ÇókµÄÖµ¼°b¡¢cµÄÊýÁ¿¹ØÏµÊ½£»£¨ÓÃcµÄ´úÊýʽ±íʾb£©
£¨2£©ÈôÁ½º¯ÊýµÄͼÏó³ý¹«¹²µãAÍ⣬ÁíÍ⻹ÓÐÁ½¸ö¹«¹²µãB£¨m£¬1£©¡¢C£¨1£¬n£©£¬ÊÔÔÚÈçͼËùʾµÄÖ±½Ç×ø±êϵÖл­³öÕâÁ½¸öº¯ÊýµÄͼÏ󣬲¢ÀûÓÃͼÏ󻨴ð£¬xΪºÎֵʱ£¬y1£¾y2£»
£¨3£©µ±cÖµÂú×ãʲôÌõ¼þʱ£¬º¯Êýy2=-x2+bx+cÔÚx¡Ü-$\frac{1}{2}$µÄ·¶Î§ÄÚËæxµÄÔö´ó¶øÔö´ó£¿

·ÖÎö £¨1£©½«µãAµÄ×ø±ê´úÈëÁ½º¯ÊýµÄ½âÎöʽÖм´¿ÉµÃ³ökµÄÖµ£¬ÒÔ¼°bÓëcµÄÊýÁ¿¹ØÏµ£®
£¨2£©ÔÚ£¨1£©ÖÐÒѵóöÁË·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬ÄÇô¿É¸ù¾ÝB£¬CÁ½µã¶¼ÔÚ·´±ÈÀýº¯ÊýÉÏ¿ÉÇó³öB£¬CµÄ×ø±ê£¬È»ºó¸ù¾ÝB£¬CµÄ×ø±êÓôý¶¨ÏµÊý·¨Çó³öÅ×ÎïÏߵĽâÎöʽ£®½ø¶ø¿É¸ù¾ÝÁ½º¯ÊýµÄ½âÎöʽÀ´µÃ³öº¯ÊýµÄͼÐΣ¬ÒÔ¼°y1£¾y2ʱ£¬xµÄȡֵ·¶Î§£®
£¨3£©ÓÉÓÚÅ×ÎïÏß¿ª¿ÚÏòÏ£¬Òò´Ë¶Ô³ÆÖá×ó±ß£¬Å×ÎïÏßÉϵĵ㶼ÊÇËæxµÄÔö´ó¶øÔö´ó£¬ÄÇô¶Ô³ÆÖá-$\frac{b}{2a}$¡Ü-$\frac{1}{2}$£¬È»ºóÔÙ¸ù¾Ý£¨1£©ÖÐb£¬cµÄ´óС¹ØÏµ¼´¿ÉÇó³öcµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©½«A£¨-1£¬2£©´úÈë·´±ÈÀýº¯Êýy1=$\frac{k}{x}$ÖУ¬
¿ÉµÃk=£¨-1£©¡Á2=-2£¬
½«A£¨-1£¬2£©´úÈë¶þ´Îº¯Êýy2=-x2+bx+c£¬
¿ÉµÃ2=-1-b+c£¬
¼´b=c-3£®
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬BµÄ×ø±êΪ£¨-2£¬1£©£¬CµÄ×ø±êΪ£¨1£¬-2£©£®
·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy1=-$\frac{2}{x}$£¬
Å×ÎïÏߵĽâÎöʽΪy2=-x2-2x+1£®
ÈçͼÓÒͼ£ºÓÉͼ¿ÉÖª£ºµ±x£¼-2£¬-1£¼x£¼0ºÍ1£¼xʱ£¬y1£¾y2£®
£¨3£©¡ßÅ×ÎïÏß¿ª¿ÚÏòÏ£¬Òò´Ë¶Ô³ÆÖá×ó±ß£¬Å×ÎïÏßÉϵĵ㶼ÊÇËæxµÄÔö´ó¶øÔö´ó£¬
¼´-$\frac{b}{2a}$¡Ü-$\frac{1}{2}$£¬
¡à-$\frac{c-3}{-2}$¡Ü-$\frac{1}{2}$£¬
½âµÃc¡Ü2£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁË·´±ÈÀýº¯ÊýºÍ¶þ´Îº¯ÊýµÄ×ÛºÏ֪ʶ£¬ÀûÓÃÌõ¼þÀ´È·¶¨b£¬cµÄÖµ»òÊýÁ¿¹ØÏµÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®´Ó¼×µØµ½ÒÒµØÓÐÒ»¶ÎÉÏÆÂÓëÒ»¶Îƽ·£®Èç¹û±£³ÖÉÏÆÂÿСʱ×ß3km£¬Æ½Â·Ã¿Ð¡Ê±×ß4km£¬ÏÂÆÂÿСʱ×ß5km£¬ÄÇô´Ó¼×µØµ½ÒÒµØÐè54min£¬´ÓÒҵص½¼×µØÐè42min£®Éè´Ó¼×µØµ½ÒÒµØÉÏÆÂÓëÆ½Â··Ö±ðΪx km£¬y km£¬ÒÀÌâÒ⣬ËùÁз½³Ì×éÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=\frac{54}{60}}\\{\frac{x}{5}+\frac{y}{4}=\frac{42}{60}}\end{array}\right.$B£®$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=\frac{54}{60}}\\{\frac{x}{4}+\frac{y}{5}=\frac{42}{60}}\end{array}\right.$
C£®$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=54}\\{\frac{x}{5}+\frac{y}{4}=42}\end{array}\right.$D£®$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=54}\\{\frac{x}{4}+\frac{y}{5}=42}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ä³º¯Êý¾ßÓÐÏÂÁÐÐÔÖÊ£º¢ÙͼÏóÔÚ¶þ¡¢ËÄÏóÏÞÄÚ£»¢ÚÔÚÿ¸öÏóÏÞÄÚ£¬º¯ÊýÖµyËæ×Ô±äÁ¿xµÄÔö´ó¶øÔö´ó£®ÔòÆäº¯Êý½âÎöʽ¿ÉÒÔΪy=-$\frac{2}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬´óÕý·½Ðεı߳¤Îªm£¬Ð¡Õý·½Ðεı߳¤Îªn£¬ÈôÓÃx¡¢y±íʾËĸöÏàͬ³¤·½ÐεÄÁ½±ß³¤£¨x£¾y£©£¬¸ø³öÒÔϹØÏµÊ½£º¢Ùx+y=m£»¢Úx-y=n£»¢Ûxy=$\frac{{m}^{2}-{n}^{2}}{4}$£® ÆäÖÐÕýÈ·µÄ¹ØÏµÊ½µÄ¸öÊýÓУ¨¡¡¡¡£©
A£®0¸öB£®1¸öC£®2¸öD£®3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®$\sqrt{{£¨-4£©}^{2}}$=4£»${£¨\sqrt{4}£©}^{2}$=4£»${£¨\sqrt{0.8}£©}^{2}$=0.8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÈôÅ×ÎïÏßy=ax2-3ax+a2-2a¾­¹ýÔ­µã£¬ÔòaµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚµ¯ÐÔÏÞ¶ÈÄÚ£¬µ¯»ÉµÄ³¤¶Èy£¨ÀåÃ×£©ÊÇËù¹ÒÎïÌåÖÊÁ¿x£¨Ç§¿Ë£©µÄÒ»´Îº¯Êý£®ÒÑÖªÕâ¸ùµ¯»ÉÉϹÒ10kgÎïÌåʱµ¯»É³¤¶ÈΪ11cm£¬¹Ò30kgÎïÌåʱµ¯»É³¤¶ÈΪ15cm£»
£¨1£©ÊÔÈ·¶¨µ¯»É³¤¶Èy£¨cm£©ÓëËù¹ÒÎïÌåÖÊÁ¿x£¨kg£©Ö®¼äµÄº¯Êý¹ØÏµÊ½£®
£¨2£©²¢Çóµ±Ëù¹ÒÎïÌåµÄÖÊÁ¿Îª35ǧ¿Ëʱµ¯»ÉµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ö±Ïßy=$\frac{1}{2}$x+2½»xÖáÓÚA£¬½»yÖáÓÚB£¬Pµã´ÓAµã³ö·¢ÑØÉäÏßAOÔ˶¯£¬Í¬Ê±Q´ÓBµã³ö·¢ÑØÉäÏßOB·½ÏòÔ˶¯£¬ËٶȾùΪ1¸öµ¥Î»/Ãë
£¨1£©µ±Ê±¼ät=3sʱ£¬ÇóS¡÷PBQ£¿
£¨2£©µ±S¡÷PBQ=$\frac{5}{2}$ʱ£¬ÇóÔ˶¯µÄʱ¼ät£»
£¨3£©µãPÔÚÏß¶ÎOAÉÏÔ˶¯µÄ¹ý³ÌÖÐÊÇ·ñ´æÔÚʱ¼ät£¬Ê¹S¡÷PBQ×î´ó£¿Èô´æÔÚ£¬ÇótµÄÖµ£»Èô²»´æÔÚ£¬ÊÔ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖª$\sqrt{{x}^{2}-5x+6}$=$\sqrt{x-2}$•$\sqrt{x-3}$£¬ÔòxµÄȡֵ·¶Î§ÊÇx¡Ý3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸